• Title/Summary/Keyword: soft magnetic

Search Result 780, Processing Time 0.024 seconds

Effect of epidural corticosteroid injection on magnetic resonance imaging findings

  • Kim, Min Soo;Jeong, Tae Yoon;Cheong, Yu Seon;Jeon, Young Wook;Lim, So Young;Kang, Seong Sik;Kim, In Nam;Chang, Tsong Bin;Seong, Hyun Ho;Hwang, Byeong Mun
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.281-286
    • /
    • 2017
  • Background: Magnetic resonance imaging (MRI) of the spine is the preferred diagnostic tool for pathologic conditions affecting the spine. However, in patients receiving epidural corticosteroid injection (ESI) for treatment of spinal diseases, there is a possibility of misreading of MR images because of air or fluid in the epidural space after the injection. Therefore, we defined the characteristics of abnormal changes in MRI findings following an ESI in patients with low back pain. Methods: We reviewed the medical records of 133 patients who underwent MRI of the lumbar spine within 7 days after ESI between 2006 and 2015. All patients were administered an ESI using a 22-gauge Tuohy needle at the lumbar spine through the interlaminar approach. The epidural space was identified by the loss of resistance technique with air. Results: The incidences of abnormal changes in MRI findings because of ESI were 54%, 31%, and 25% in patients who underwent MRI at approximately 24 h, and 2 and 3 days after ESI, respectively. Abnormal MRI findings included epidural air or fluid, needle tracks, and soft tissue changes. Epidural air, the most frequent abnormal finding (82%), was observed in 41% of patients who underwent MRI within 3 days after injection. Abnormal findings due to an ESI were not observed in MR images acquired 4 days after ESI or later. Conclusions: Pain physicians should consider the possibility of abnormal findings in MR images acquired after epidural injection using the interlaminar approach and the loss of resistance technique with air at the lumbar spine.

Magnetic Properties of Nanocrystalline $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) Alloys ($Fe_{76-x} Cu_1Mo_xSi_14B_9(x=2, 3)$ 초미세 결정합금의 자기적 특성)

  • Pi, W.K.;Noh, T.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • The effect of annealing on the magnetic properties and the microstructures of the amorphous $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) alloys were investigated. When annealed at 500${^{\circ}C}$ for 1hr, $8{\sim}9{\times}10^3$ of the effective permeability and 3~4 A/m of the coercive force were achieved upon crystallization to $\alpha$-Fe phase. And the average diameter of the $\alpha$-Fe grains was about 20nm. For the nanovrystalline ferromagnets. the fine grain size is the important requirement to obtain a good soft magnetic property. In this work, in order to get the finer grain size of $\alpha$-Fe phase, two-step annealing treatment was given. That is, following the low-temperature at $400{^{\circ}C}$ for 1~3hr, the high-temperature annealing at $500{^{\circ}C}$ for 1hr was carried out. As the low-temperature annealing time increased, the effective permeability increased to $1.2{\sim}1.7{\times}10^4$ and the coercive force decreased to about 2 A/m. And the grain size was observed to be smaller than 10nm. The increased permeability and the decreased coercive force were attributed to the reduced average crystalline anisotropy by the refinement of $\alpha$-Fe(Si) grains.

  • PDF

Imaging Assessment of Primary Prostate Cancer, Focused on Advanced MR Imaging and PET/CT (자기공명영상과 PET/CT를 중심으로 한 전립선 암의 영상 진단)

  • Jang, Jin-Hee;Byun, Jae-Young;Kim, Min-Sung;Lee, Young-Joon;Oh, Sun-Nam;Rha, Sung-Eun;Yoo, Ie-Ryung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.89-99
    • /
    • 2008
  • Imaging assessment of prostate cancer is one of the most difficult sections of oncology imaging. Detecting, localizing and staging of the primary prostate cancer by preoperative imaging are still challenging for the radiologist. Magnetic resonance (MR) imaging provides excellent soft tissue contrast and is widely used for solid organ imaging, but results of preoperative imaging of the prostate gland with conventional MR imaging is unsatisfactory. Positron emission tomography and computed tomography (PET/CT) is the cornerstone in oncology imaging, but some limitations prohibit the assessment of primary prostate cancer with PET or PET/CT. Recent studies to overcome these insufficient accuracies of imaging evaluation of primary prostate cancers with advanced MR techniques and PET and PET/CT are reported. In this article, we review the imaging findings of prostate cancer on variable modalities, focused on MR imaging and PET/CT.

  • PDF

Magnetic Properties of Nanocrystalline Fe-Co-Cu-Nb-Si-B Alloys (Fe-Co-Cu-Nb-Si-B 초미세결정합금의 자기적 특성연구)

  • 김약연;백종성;서영수;임우영;유성초;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.130-134
    • /
    • 1993
  • The magnetic properties of the amorphous $Fe_{73.5-X}Co_{X}Cu_{1}Nb_{3}Si_{13.5}B_{9}(x=2,\;4)$ alloys, fabricated by a single roll rapid quenching technique and annealed at $400~650^{\circ}C$, have been investigated. The optimum annealing temperature is $550^{\circ}C$ for the amorphous $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy. The properties of the nanocrystalline $Fe_{71.5}Co_{2}Cu_{1}Nb_{3}Si_{13.5}B_{9}$ alloy show the relative permeability of $1.1{\times}10^{4}$ and the coercive force of 0.22 Oe at 1 kHz. When annealed at $600^{\circ}C$, the nanocrystalline $Fe_{69.5}Co_{4}Cu_{1}Nb_{3}Si_{13.5)B_{9}$ alloy shows the relative permeability of $1.0{\times}10^{4}$ and the coercive force of 0.19 Oe at 1 kHz. From the X-ray measurement, it is found that the remarkably improved soft magnetic properties are the effect of the formation of $\alpha$-Fe(Si) grain. By the results of FMR exper-imeIlt, the optimum annealing condition is just below temperature which the peak-to-peak line width of FMR spectrum increase rapidly.

  • PDF

Effect of Lumbar Epidural Nerve Block using the Transforamimnal Approach and the Interlaminar Approach on Magnetic Resonance Imaging Findings (추간공 접근법과 추궁간판 접근법을 사용한 요부 경막외 신경차단술이 자기공명영상 소견에 미치는 영향)

  • Hwang, Byeong-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.317-323
    • /
    • 2017
  • This study was conducted to investigate the differences in magnetic resonance imaging (MRI) findings after lumbar epidural nerve block using the transforaminal approach and the interlaminar approach in patients with low back pain. This study was an observational analysis study of abnormal findings of MRI after epidural nerve block. This study included 78 patients who underwent MRI at approximately 24 h after lumbar epidural nerve block at a pain clinic of a university hospital between January 2007 and December 2016. Among patients who received epidural nerve block, 36 used the interlaminar approach and 42 used the transforaminal approach. The incidence of patients with abnormal changes in MRI findings was higher among patients using the interlaminar approach (53%) than those using the transforaminal approach (7%). Abnormal MRI findings included epidural air or fluid, needle tracks, and soft tissue changes, with epidural air being the most frequent abnormal finding (72%). We recommend use of the transforaminal approach to reduce the possibility of misreading or difficulty in interpretation of images of patients who underwent MRI at approximately 24 h after lumbar epidural nerve block. Practitioners should consider the possibility of abnormal findings such as epidural air on MRI in cases of epidural nerve block using the interlaminar approach.

Growth and Magnetic Properties of $Y_{3-x}La_xFe_5O_{12}(0.0{\le}X{\le}1.0)$ Powders and Thin Films by a Sol-Gel Method (Sol-Gel 법에 의한 $Y_{3-x}La_xFe_5O_{12}(0.0{\le}X{\le}1.0)$ 분말과 박막의 합성 및 자기적 특성에 관한 연구)

  • 엄영랑;김철성;임연수;이재광
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.350-356
    • /
    • 1998
  • $Y_{3-x}La_xFe_5O_{12}$ (x=0.0, 0.25, 0.5, 0.75, 1.0) powders and thin films were fabricated by a sol-gel method and their magnetic properties and crystal structure were investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. XRD and Mossbauer spectroscopy measurements show that garnet powders annealed at 900 $^{\circ}C$ for 8 hours were single-phased and that thin films fired at 800 $^{\circ}C$ for 2 hours were crystallized without any preferred direction. X-ray diffraction patterns of $Y_{3-x}La_xFe_5O_{12}$ powders annealed at 1000 $^{\circ}C$ had only peaks of the garnet structure in case of x$\leq$0.75 but those of $Y_2LaFe_5O_{12}$ powders consisted of peaks from garnets and $LaFeO_3$. Mossbauer sepectra of garnet powders grown by the sol-gel method had a similar shape of those of powders grown by a conventional ceramic method. Grain sizes of garnet powders were 200~300 nm and the averaged surface roughness was 3.17 nm. Results of VSM measurements show the powders and thin films had soft magnetic properties and that the garnet powders had the largest saturation magnetization, 30 emu/g, and the lowest coercivity, 52 Oe.

  • PDF

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Evaluation of Combined Contrast Agent using N-(p-maleimidophenyl) Isocyanate Linker-mediated Synthesis for Simultaneous PET-MRI (동시 PET-MRI를 위한 N-(p-maleimidophenyl) isocyanate linker-매개 합성을 이용한 복합 조영제의 평가)

  • Lee, Gil-Jae;Lee, Hwun-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • In this paper, a combined 18F-FDG(fluorodeoxyglucose) and MNP(magnetic nanoparticles) contrast agent was synthesized using N-(p-maleimidophenyl) isocyanate as the crosslinker for use in simultaneous PET-MRI scans. PET-MRI images were acquired and evaluated before and after injection of the combined contrast imaging agent (18F-FDG labeled MNP) from a glioma stem cell mouse model. After setting the region of interest (ROI) on each acquired image, the area of the lesion was calculated by segmentation. As a result, the PET image was larger than the MRI. In particular, the simultaneous PET-MRI images showed accurate lesions along with the surrounding soft tissue. The mean and standard deviation values were higher in the MRI images alone than in the PET images or the simultaneous PET-MRI images, regardless of whether the contrast agent was injected. In addition, the simultaneous PET-MRI image values were higher than for the PET images. For PSNR experiments, the original image was PET Image using 18F-FDG, MRI using MNPs, and MRI without contrast medium, and the target image was simultaneous PET-MRI image using 18F-FDG labeled MNPs contrast medium. As a result, all of them appeared significantly, suggesting that the 18F-FDG labeled MNPs contrast medium is useful. Future research is needed to develop an agent that can simultaneously diagnose and treat through SPECT-MRI imaging research that can use various nuclides.

Coronal Three-Dimensional Magnetic Resonance Imaging for Improving Diagnostic Accuracy for Posterior Ligamentous Complex Disruption In a Goat Spine Injury Model

  • Xuee Zhu;Jichen Wang;Dan Zhou;Chong Feng;Zhiwen Dong;Hanxiao Yu
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.641-648
    • /
    • 2019
  • Objective: The purpose of this study was to investigate whether three-dimensional (3D) magnetic resonance imaging could improve diagnostic accuracy for suspected posterior ligamentous complex (PLC) disruption. Materials and Methods: We used 20 freshly harvested goat spine samples with 60 segments and intact surrounding soft tissue. The animals were aged 1-1.5 years and consisted of 8 males and 12 females, which were sexually mature but had not reached adult weights. We created a paraspinal contusion model by percutaneously injecting 10 mL saline into each side of the interspinous ligament (ISL). All segments underwent T2-weighted sagittal and coronal short inversion time inversion recovery (STIR) scans as well as coronal and sagittal 3D proton density-weighted spectrally selective inversion recovery (3D-PDW-SPIR) scans acquired at 1.5T. Following scanning, some ISLs were cut and then the segments were rescanned using the same magnetic resonance (MR) techniques. Two radiologists independently assessed the MR images, and the reliability of ISL tear interpretation was assessed using the kappa coefficient. The chi-square test was used to compare the diagnostic accuracy of images obtained using the different MR techniques. Results: The interobserver reliability for detecting ISL disruption was high for all imaging techniques (0.776-0.949). The sensitivity, specificity, and diagnostic accuracy of the coronal 3D-PDW-SPIR technique for detecting ISL tears were 100, 96.9, and 97.9%, respectively, which were significantly higher than those of the sagittal STIR (p = 0.000), coronal STIR (p = 0.000), and sagittal 3D-PDW-SPIR (p = 0.001) techniques. Conclusion: Compared to other MR methods, coronal 3D-PDW-SPIR provides a more accurate diagnosis of ISL disruption. Adding coronal 3D-PDW-SPIR to a routine MR protocol may help to identify PLC disruptions in cases with nearby contusion.

Growth of Fe3O4 Particles and Their Magnetic Properties (Fe3O4 분말제조와 자기적 특성)

  • Kwon, Woo-Hyun;Lee, Seung-Wha;Chae, Kwang-Pyo;Lee, Jae-Gwang;Sur, Jung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.180-185
    • /
    • 2009
  • Fe$_3$O$_4$ particles, prepared by a sol-gel method, were examined for their structural characteristic, particle shapes and sizes, and their magnetic properties. Two different chemical compositions (using a mol rate Fe$^{2+}$/Fe$^{3+}$ = 1/2 and only Fe$^{2+}$) and 2-methoxyethanol were used for making proper solutions. And the solutions were refluxed and dry in a dry oven and the samples were fired at 200$\sim$600$^{\circ}C$ in the N$_2$ atmosphere. The formation of single-phased spinel ferrite powders was identified with the X-ray diffraction measurement as they were fired at above 250$^{\circ}C$. The result of scanning electron microscopy measurement showed the increase of annealing temperature yielded the particle size increased. The magnetic transition was observed using the Mossbaur spectroscopy measurement. As the ferrite, prepared with the chemical composition (Fe$^{2+}$/Fe$^{3+}$ = 1/2), was fired at 250$^{\circ}C$, 78% of the ferrite had a ferrimagnetic property and 22% of the ferrite was non-magnetic. In case of preparing the sample with only Fe$^{2+}$ and annealed at 200$^{\circ}C$, it had a single phased spinel structure but its particle size was too small to be ferrimagnetic. The annealing temperature above 250$^{\circ}C$ made powders a spinel structure regardless of the preparation method. They had a typical soft magnetic property and their saturation magnetization and coercivity became larger as the annealing temperature increased.