• Title/Summary/Keyword: soft lithographic method

Search Result 13, Processing Time 0.016 seconds

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF

Fabrication of Functional Nanomaterials by Peptide Self-Assembly

  • Park, Chan-Beom
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.8.1-8.1
    • /
    • 2009
  • The self-assembly of peptide-based building blocks into nanostructures is an attractive route for fabricating novel materials because of their capacity for molecular recognition and functional flexibility as well as the mild conditions required in the fabrication process. Among various peptide-based building blocks forming nanostructures, the simplest building blocks are aromatic dipeptides like diphenylalanine, which can readily self-assemble into nanotubes in aqueous solutions at ambient conditions. Recently, we have developed a high-temperature solid-phase self-assembly process for diphenylalanine. Through this novel process, we succeeded in the growth of vertically well-aligned, uniform nanowires from amorphous peptide thin film. To demonstrate the versatility of our approach, we also fabricated a micropattern of peptide nanowires by combining our solid-phase growth method and simple soft lithographic techniques. We believe that our studies on peptide self-assembly will provide a new horizon for peptide-based nanofabrication.

  • PDF

Development of Irreversible Micro-size Ferromagnetic Structures by Hydrogenation and Electron-beam Lithography (수소화 및 전자빔 사진식각 기술에 의한 비가역적 마이크로 크기의 강자성 구조체 개발)

  • Yun Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.7-12
    • /
    • 2006
  • In this study, we developed irreversible and stable micro-size ferromagnetic structures utilizing hydrogenation and electron-beam lithography processes. The compositionally modulated (CM) Fe-Zr thin films that had average compositions $Fe_XZr_{100-x}$ with $x=65-85\%$ modulation periods of similar to 1 nm, and total thicknesses of similar to 100 m were prepared. The magnetic properties of CM Fe-Zr thin films were measured using a SQUID magnetometer, VSM and B-H loop tracer. After hydrogenation, the CM films exhibited larger magnetic moment increases than similar homogeneous alloy films for all compositions and かey showed largest increase in $Fe_{80}Zr_{20}$ composition. After aging in air at $300^{\circ}K$ the hydrogenated $Fe_{80}Zr_{20}$ CM films showed much larger magnetic moment increases, indicating that they relax to a stable, irreversible, soft magnetic state. The selective hydrogenation through electron-beam lithographed windows were performed after the circle shaped windows were prepared on $Fe_{80}Zr_{20}$ CM films by electron beam lithography. The hydrogenation through electron-beam resist and W lithographic techniques give a $49\%$ magnetic moment increase. This method can be applied to nano scale structures.