• Title/Summary/Keyword: soft foundation

Search Result 365, Processing Time 0.023 seconds

Reconsideration of the Public Diplomacy Act in Korea and a Few Suggestions

  • Park, Jongho;Kim, Ho
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.154-161
    • /
    • 2022
  • The Korean government has recently invigorated the activities of public diplomacy. It is based on the Public Diplomacy Act enacted in 2016. However, there is a widespread concern that it was belatedly enacted and showed necessity to a revision. We believe that this paper contains three contributions which were not sufficiently addressed before. First, we identify the current state of public diplomacy-related legislation in Korea. Second, we argue the necessity to critically review the legal adequacy of Public Diplomacy Act with a consideration of rapidly changing external environment. Lastly, we propose several ways of revision for the future development of public diplomacy in Korea. When revising the Act, it is necessary to make clear a legal connection between the general law and the special law as in the case of the Korea Foundation Act and the Public Diplomacy Act. In this regard, it is worth examining the relationship between the Framework Act on International Development Cooperation and related norms. In addition, the role of the private sector and subnational governments should be expanded. For this purpose, a method and level of cooperation with the private sector should be clearly defined.

Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves (비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

Estimating the lateral profile of helical piles using modified p-y springs

  • Hyeong-Joo Kim;Hyeong-Soo Kim;Peter Rey Dinoy;James Vincent Reyes;Yeong-Seong Jeong;Jun-Yong Park;Kevin Bagas Arifki Mawuntu
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A growing trend of utilizing helical piles for soft soil strata to support infrastructure projects is currently observed in Saemangeum, South Korea. Recognized mainly due to its ease of installation and reusability proves to be far more superior compared to other foundation types in terms of sustainability. This study applies modified p-y springs to characterize the behavior of a laterally loaded helical pile with a shaft diameter of 89.1 mm affixed with 3 helices evenly spaced along its embedded length of 2.5 m. Geotechnical soil properties are correlated from CPT data near the test bed vicinity and strain gauges mounted on the shaft surface. A modification factor is applied on the p-y springs to adjust the simulated data and match it to the bending moment, soil resistance and deflection values from the strain gauge measurements. The predicted lateral behavior of the helical pile through the numerical analysis method shows fairly good agreement to the recorded field test results.

The Bearing Capacity Characteristics of Top Base Foundations in Cohesionless Soils (비점착성 지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.135-145
    • /
    • 2010
  • Top Base Foundation (TBF) is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. The design of bearing capacity obtained from exiting Japanese standard underestimates considerably what is compared with the observation values from the field measurement. Therefore, intensive model tests and site observation programs are carried out to establish more reasonable prediction technique and understanding of TBF in soft ground. In this study, 1/5 scale model tests are performed in order to investigate the behavior of TBF with various shapes in a laboratory. Also, about 100 sites measurement data are evaluated to investigate the field behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to introduce more reasonable bearing capacity equations of TBF considering N-value of soils, the effect of underground water and failure mechanisms.

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

A Study on the Stability Analysis of Reinforced Embankment on the Soft Ground (연약지반상의 보강성토의 안정해석에 관한 연구)

  • 임종철;전미옥;박이근;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.285-296
    • /
    • 1999
  • Preloading method is used to prevent the settling of a foundation and to increase the strength of ground by consolidation settlement in advance. But, the embankment used in preloading method brings large deformation and sliding failure in the soft ground. Recently, reinforcement method is often used in embankment in order to prevent sliding failure. But, until now, the research on the stability analysis considering both the rate of strength increase of clay by embankment load and increase of resistance force by the geosynthetics in the embankment body is not found. In this study, the stability analysis program(REAP) for embankment including these two points is developed. By this program(REAP), the stability analysis can be done about during the gradual increase of embankment and the stability counterplan can be established when the safety factor is lower than allowable safety factor of design. After calculating the position of sliding failure surface, the force of geosynthetics which is selected by either the effective tensile strength or tensile force caused by the displacement of soil mass in this position is applied to stability analysis. And the increase of resisting moment can be calculated by this force. Also, the construction period can be estimated and the time for the appropriate counterplan can be decided in order to maintain the stability of embankment. And then, safe and economical embankment design can be performed.

  • PDF

Seepage Behaviors of Enlargement Levee Containing Box Culvert Constructed on Soft Ground (연약지반에 설치된 배수통문을 포함하는 하천 보축제체의 수문 위치에 따른 침투 거동)

  • Yang, Hak-Young;Kim, Young-Muk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2018
  • In the case of the enlargement levee on the soft foundation, the existing levee and the enlargement levee connection can be damaged due to heterogeneous subsidence such as differential settlement at the joint of the box culvert passing through the levee. This study selected the downstream region of the Geum River and then confirmed the influence of the piping possibility on the levee by performing a 2D seepage analysis and analyzing the seepage tendency according to the position of the box culvert's gate. As a result, the flow velocity and the hydraulic gradient are larger in the upper breakage than the lower breakage, and the upper leak was more vulnerable to the piping than the lower leak. If leaks occur in the gate located on the riverside land, the risk of piping is increased when the water level rises and is maintained highly. In the case of the gate located on the inland, it could be predicted that the leakage could damage the stability of levee by increasing the water pressure inside the levee. As a result, if leakage occurs at any position in the box culvert, the pore water pressure is increased or decreased compared with the case when no leakage occurs. Therefore, if the pore water pressure is drastically reduced or increased compared with the normal case, leakage may occur. However, the result of this study is based on a 2D seepage analysis, and it is likely to be different from actual cases. Therefore, more detailed analysis by 3D analysis is recommended.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.