• 제목/요약/키워드: soft etching

Search Result 32, Processing Time 0.02 seconds

TREATMENT OF PRIMARY AND PERMANENT TEETH WITH THE AIR-ABRASIVE TECHNOLOGY (Air abrasion 기술을 이용한 유치 및 영구치의 수복)

  • Cho, Hyun;Lee, Kwang-Hee;Kim, Dae-Eop;Song, In-Kyung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.210-216
    • /
    • 2002
  • Air abrasion technology can prepare enamel and dentin for bonding, similar to etching by acidic gels and solutions. Longer treatment can excavate pit and fissures, preparing the tooth for immediate placement of bonded resin materials. Although not appropriate for every clinical situation, the air abrasive technology minimizes heat, vibration and bone-conducted noise associated with conventional means of caries removal since the cutting is accomplished by air pressure. Also, patients treated with the air-abrasion technology rarely request anesthesia. Air abrasion technology was more effective in treating early carious lesions and stains compared to lesions where caries had already progressed to produce soft dentin and the strong air stream and noise caused by the evacuation system was a major discomfort to pediatric patients, and the experience and skillfulness of clinician should be required for accurate and proper tooth preparation.

  • PDF

Bragg Reflecting Waveguide Device Fabricated on a Flexible Substrate using a Nano-imprinting Technology (나노임프린팅 기술을 이용한 유연성 브래그 반사 광도파로 소자)

  • Kim, Kyung-Jo;Yi, Jeong-Ah;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Bragg reflecting waveguide devices have been fabricated on a flexible polymer substrate utilizing a post lift-off process which could Provide excellent uniformity of grating Patterns on Plastic film. The 510 m Period Bragg grating pattern is made by two methods. In the first sample the grating is fabricated by exposing the laser interference pattern on a photoresist, and then it is inscribed by $O_2$ plasma etching. The grating pattern of the second sample is formed by a PDMS soft mold imprinting process. The selective adhesion property of SU-8 material for Au and Si surfaces is utilized to prepare a 100-mm thick plastic substrate. Single mode waveguide is fabricated on the plastic substrate using polymer materials with refractive indices of 1.540 and 1.430 for the core and the cladding layers, respectively. The Bragg grating on Plastic substrate does not show any degradation in its spectral response compared to the reference sample made on a silicon wafer.