• 제목/요약/키워드: soft computing techniques

검색결과 52건 처리시간 0.026초

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용 (Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures)

  • 김승진;김형곤;이종수;강신일
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

인간친화형 인터페이스를 위한 사용자 얼굴에서의 효과적인 의도 파악 (An Effective Intention Reading from User Face for Human-Friendly Interface)

  • 김대진;송원경;김종성;변증남
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, an effective intention reading scheme is proposed for human-friendly interface. Soft computing techniques such as fuzzy logic and artificial neural networks are used for this. And Gabor filter based feature(GG feature) is also proposed to deal with local activity in the human face. It is based on human visual system and Gabor filter based approach is very popular in these days. The proposed scheme is adopted for human-friendly interface for rehabilitation service robotic system KARES II.

  • PDF

Gestures as a Means of Human-Friendly Communication between Man and Machine

  • Bien, Zeungnam
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper, ‘gesture’ is discussed as a means of human-friendly communication between man and machine. We classify various gestures into two Categories: ‘contact based’ and ‘non-contact based’ Each method is reviewed and some real applications are introduced. Also, key design issues of the method are addressed and some contributions of soft-computing techniques, such as fuzzy logic, artificial neural networks (ANN), rough set theory and evolutionary computation, are discussed.

  • PDF

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

소프트 컴퓨팅 기법을 이용한 근전도 신호의 패턴 분류와 재활 로봇 팔 제어에의 응용 (EMG Pattern Classification using Soft Computing Techniques and Its Application to the Control of a Rehabilitation Robotic Arm)

  • 한정수;김종성;송원경;방원철;이희영;변증남
    • 전자공학회논문지SC
    • /
    • 제37권6호
    • /
    • pp.50-63
    • /
    • 2000
  • 본 논문에서는 소프트 컴퓨팅 기법을 이용한 새로운 근전도 신호 패턴 분류 방법을 제안한다. 재활 로봇시스템에서 기존에 사용되었던 여러 가지 입력 장치(음성, 레이저 포인터, 키패드, 3차원 입력기 등)에 비해 근전도 신호를 이용한 방식이 가지는 장점을 서술한다. 기존의 근전도 신호 분류 방법의 문제점인 사용자 의존성을 줄이기 위해 제안한 사용자 독립적인 특징 선택 방법에 대해 상술한다. 선택된 특징 집합을 이용하여 퍼지 패턴 분류기 및 퍼지 최대-최소 신경망을 구성하여 학습 전(퍼지 패턴 분류기)과 학습 후(퍼지 최대-최소 신경망)에 각각 83%와 90%의 분류 성공률을 얻어 제안된 방법의 유용성을 확인할 수 있었다.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

소프트 컴퓨팅 기법을 이용한 개인화된 손동작 인식 시스템 (A Personalized Hand Gesture Recognition System using Soft Computing Techniques)

  • 전문진;도준형;이상완;박광현;변증남
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 2008
  • 최근 하지가 불편한 노약자나 장애인이 집안의 다양한 가전기기를 손쉽게 제어하기 위한 비전 기반의 손동작 인식 기술이 발전해 왔다. 다수의 사용자가 하나의 손동작 인식 시스템을 사용할 경우 사용자마다 손동작 특성이 모두 다르기 때문에 특정 사용자의 인식률이 저하되는 문제가 발생한다. 또한 동일한 사용자라 하더라도 시간에 따라 손동작 특성이 변화할 수 있다. 사용자마다 다른 손동작 특성은 모델 학습 및 선택 기법을 사용해 효과적으로 다루어질 수 있다. 시간에 따라 변하는 사용자의 특성은 퍼지 개념을 이용해 효과적으로 다루어질 수 있다. 본 논문에서는 다변량 퍼지 의사 결정트리를 이용해 사용자 별 인식모델을 만드는 방법을 제시한다. 또한 새로운 사용자가 시스템을 사용할 경우 가장 적합한 모델을 선택해 인식에 사용하고 인식률을 측정한다.