• Title/Summary/Keyword: soft computing methods

Search Result 40, Processing Time 0.023 seconds

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Mehrabi, Peyman;Zandi, Yousef;Dehghani, Davoud;Bahadori, Alireza;Shariati, Ali;Trung, Nguyen Thoi;Salih, Musab N.A.;Poi-Ngian, Shek
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.319-332
    • /
    • 2019
  • This study is aimed to predict the behaviour of channel shear connectors in composite floor systems at different temperatures. For this purpose, a soft computing approach is adopted. Two novel intelligence methods, including an Extreme Learning Machine (ELM) and a Genetic Programming (GP), are developed. In order to generate the required data for the intelligence methods, several push-out tests were conducted on various channel connectors at different temperatures. The dimension of the channel connectors, temperature, and slip are considered as the inputs of the models, and the strength of the connector is predicted as the output. Next, the performance of the ELM and GP is evaluated by developing an Artificial Neural Network (ANN). Finally, the performance of the ELM, GP, and ANN is compared with each other. Results show that ELM is capable of achieving superior performance indices in comparison with GP and ANN in the case of load prediction. Also, it is found that ELM is not only a very fast algorithm but also a more reliable model.

The maxillary incisor labial face tangent: clinical evaluation of maxillary incisor inclination in profile smiling view and idealized aesthetics

  • Naini, Farhad B.;Manouchehri, Shaadi;Al-Bitar, Zaid B.;Gill, Daljit S.;Garagiola, Umberto;Wertheim, David
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.31.1-31.7
    • /
    • 2019
  • Background: To test the hypothesis that in profile smiling view, for ideal aesthetics, a tangent to the labial face of the maxillary central incisor crowns should be approximately parallel to the true vertical line and thereby perpendicular to the true horizontal line. Methods: An idealized female image was created with computer software and manipulated using the same software to construct an "ideal" female profile image with proportions, and linear and angular soft tissue measurements, based on currently accepted criteria for idealized Caucasian profiles. The maxillary incisor labial face tangent was altered in 5° increments from 70 to 120°, creating a range of images, shown in random order to 70 observers (56 lay people and 14 clinicians), who ranked the images from the most to the least attractive. The main outcome was the preference ranks of image attractiveness given by the observers. Results: The most attractive inclination of a tangent to the labial face of the maxillary incisor crowns in profile view in relation to the true horizontal line was 85°, i.e. 5° retroclined from a perpendicular 90° inclination. The most attractive range appears to be between 80 and 90°. Excessive proclination appeared to be less desirable than retroclination. Beyond 105° most observers recommend treatment. Conclusion: In natural head position, the ideal inclination of the maxillary incisor crown labial face tangent in profile view will be approximately parallel to the true vertical line and thereby approximately perpendicular to the true horizontal line.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

Principal Discriminant Variate (PDV) Method for Classification of Multicollinear Data: Application to Diagnosis of Mastitic Cows Using Near-Infrared Spectra of Plasma Samples

  • Jiang, Jian-Hui;Tsenkova, Roumiana;Yu, Ru-Qin;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1244-1244
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from mastitic and healthy cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from mastitic and healthy cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA and FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference, thereby providing a useful means for spectroscopy-based clinic applications.

  • PDF

PRINCIPAL DISCRIMINANT VARIATE (PDV) METHOD FOR CLASSIFICATION OF MULTICOLLINEAR DATA WITH APPLICATION TO NEAR-INFRARED SPECTRA OF COW PLASMA SAMPLES

  • Jiang, Jian-Hui;Yuqing Wu;Yu, Ru-Qin;Yukihiro Ozaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1042-1042
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from daily monitoring of two Japanese cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from two cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA md FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference.

  • PDF

Design of an Efficient Concurrency Control Algorithms for Real-time Database Systems (실시간 데이터베이스 시스템을 위한 효율적인 병행실행제어 알고리즘 설계)

  • Lee Seok-Jae;Park Sae-Mi;Kang Tae-ho;Yoo Jae-Soo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.67-84
    • /
    • 2004
  • Real-time database systems (RTDBS) are database systems whose transactions are associated with timing constraints such as deadlines. Therefore transaction needs to be completed by a certain deadline. Besides meeting timing constraints, a RTDBS needs to observe data consistency constraints as well. That is to say, unlike a conventional database system, whose main objective is to provide fast average response time, RTDBS may be evaluated based on how often transactions miss their deadline, the average lateness or tardiness of late transactions, the cost incurred in transactions missing their deadlines. Therefore, in RTDBS, transactions should be scheduled according to their criticalness and tightness of their deadlines, even If this means sacrificing fairness and system throughput, And It always must guarantee preceding process of the transaction with the higher priority. In this paper, we propose an efficient real-time scheduling algorithm (Multi-level EFDF) that alleviates problems of the existing real-time scheduling algorithms, a real-time concurrency control algorithm(2PL-FT) for firm and soft real-time transactions. And we compare the proposed 2PL F[ with AVCC in terms of the restarting ratio and the deadline missing ratio of transactions. We show through experiments that our algorithms achieve good performance over the other existing methods proposed earlier.

  • PDF

New Soil Classification System Using Cone Penetration Test (콘관입시험결과를 이용한 새로운 흙분류 방법의 개발)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang;Joo, No-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.57-70
    • /
    • 2008
  • The advantage of piezocone penetration test is a guarantee of continuous data, which is a source of reliable interpretation of target soil layer. Many researches have been carried out f3r several decades and several classification charts have been developed to classify in-situ soil from the cone penetration test result. Since most present classification charts or methods were developed based on the data which were compiled over the world except Korea, they should be verified to be feasible for Korean soil. Furthermore, sometimes their charts provide different soil classification results according to the different input parameters. However, unfortunately, revision of those charts is quite difficult or almost impossible. In this research a new soil classification model is proposed by using fuzzy C-mean clustering and neuro-fuzzy theory based on the 5371 CPT results and soil logging results compiled from 17 local sites around Korea. Proposed neuro-fuzzy soil classification model was verified by comparing the classification results f3r new data, which were not used during learning process of neuro-fuzzy model, with real soil log. Efficiency of proposed neuro-fuzzy model was compared with other soft computing classification models and Robertson method for new data.