• Title/Summary/Keyword: sodium-cooled reactor

Search Result 162, Processing Time 0.023 seconds

A Preliminary Safety Analysis for the Prototype Gen IV Sodium-Cooled Fast Reactor

  • Lee, Kwi Lim;Ha, Kwi-Seok;Jeong, Jae-Ho;Choi, Chi-Woong;Jeong, Taekyeong;Ahn, Sang June;Lee, Seung Won;Chang, Won-Pyo;Kang, Seok Hun;Yoo, Jaewoon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1071-1082
    • /
    • 2016
  • Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the invessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor (PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가)

  • Koo, Gyeong Hoi;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor (소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구)

  • Park, Sun Hee;Han, Ji-Woong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.28-41
    • /
    • 2019
  • We carried out performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor. We analyzed transient-dynamic behavior of fluids inside the steam generator to vent into a sodium dump tank or a water dump tank when tubes in the steam generator were broken to cause a large-water-leak accident. Accordingly, we preliminarily evaluated design requirements of our system. Our results showed that sodium in the shell side of the steam generator and in Intermediate Heat Transport System was completely vented within 50 s and feed water in the tube side of the steam generator was completely vented within 2.5 s. It was analyzed that pressure of the tube side of the steam generator was higher than pressure of the shell side of the steam generator, which showed that sodium in the shell side did not flow into the tube side. Our results are expected to be used as basis information to performance analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor.

Robust technique using magnetohydrodynamics for safety improvement in sodium-cooled fast reactor

  • Lee, Jong Hui;Park, Il Seouk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.565-578
    • /
    • 2022
  • Among Generation IV reactors, the sodium-cooled fast reactor (SFR) is attracting attention as a system having great potential for commercial use. Gas entrainment is a thermal-hydraulic issue related to the safety problem of the reactor core in the SFR. Typically, a dipped plate or baffles are installed under the free surface to suppress gas entrainment. However, these approaches can cause gas entrainment in other locations and require many trial-and-error and verifications. In this study, a new strategy using magnetohydrodynamics to suppress gas entrainment in the SFR is proposed. In a counter-flow model, a judgment criterion of gas entrainment occurrence was developed for both water and liquid metal. Moreover, the gas entrainment can be completely suppressed by applying a magnetic field.

Seismic modeling and analysis for sodium-cooled fast reactor

  • Koo, Gyeong-Hoi;Kim, Suk-Hoon;Kim, Jong-Bum
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.475-502
    • /
    • 2012
  • In this paper, the seismic analysis modeling technologies for sodium-cooled fast reactor (SFR) are presented with detailed descriptions for each structure, system and component (SSC) model. The complicated reactor system of pool type SFR, which is composed of the reactor vessel, internal structures, intermediate heat exchangers, primary pumps, core assemblies, and core support structures, is mathematically described with simple stick models which can represent fundamental frequencies of SSC. To do this, detailed finite element analyses were carried out to identify fundamental beam frequencies with consideration of fluid added mass effects caused by primary sodium coolant contained in the reactor vessel. The calculation of fluid added masses is performed by detailed finite element analyses using FAMD computer program and the results are discussed in terms of the ways to be considered in a seismic modeling. Based on the results of seismic time history analyses for both seismic isolation and non-isolation design, the functional requirements for relative deflections are discussed, and the design floor response spectra are proposed that can be used for subsystem seismic design.

Development of Double Rotation C-Scanning System and Program for Under-Sodium Viewing of Sodium-Cooled Fast Reactor (소듐냉각고속로 소듐 내부 가시화를 위한 이중회전구동 C-스캔 시스템 및 프로그램 개발)

  • Joo, Young-Sang;Bae, Jin-Ho;Park, Chang-Gyu;Lee, Jae-Han;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • A double rotation C-scanning system and a software program Under-Sodium MultiVIEW have been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor KALIMER-600. Double rotation C-scanning system has been designed and manufactured by the reproduction of double rotation plug of a reactor head in KALIMER-600. Hardware system which consists of a double rotating scanner, ultrasonic waveguide sensors, a high power ultrasonic pulser-receiver, a scanner driving module and a multi channel A/D board have been constructed. The functions of scanner control, image mapping and signal processing of Under-Sodium MultiVIEW program have been implemented by using a LabVIEW graphical programming language. The performance of Under-Sodium MultiVIEW program was verified by a double rotation C-scanning test in water.

SAFETY ASPECTS OF INTERMEDIATE HEAT TRANSPORT AND DECAY HEAT REMOVAL SYSTEMS OF SODIUM-COOLED FAST REACTORS

  • CHETAL, SUBHASH CHANDER
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.260-266
    • /
    • 2015
  • Twenty sodium-cooled fast reactors (SFRs) have provided valuable experience in design, licensing, and operation. This paper summarizes the important safety criteria and safety guidelines of intermediate sodium systems, steam generators, decay heat removal systems and associated construction materials and in-service inspection. The safety criteria and guidelines provide a sufficient framework for design and licensing, in particular by new entrants in SFRs.