• 제목/요약/키워드: sodium phosphate

검색결과 499건 처리시간 0.024초

Determination of Epinephrine Using Sodium Iodate in Chemiluminescence

  • Lee, J.S.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2315-2318
    • /
    • 2007
  • Epinephrine was determined using a lab-made chemiluminescence (CL) system with air pump. Luminolsodium IO4? chemiluminescence system was employed to produce the luminescence of epinephrine. In the reaction, epinephrine was oxidized to produce superoxide or singlet oxygen by periodate in alkaline solution, which enhanced CL of luminol. For optimization, various buffers, such as phosphate, borate, and tris, were studied in this experiment. Compared to NaOH, the phosphate and borate buffer showed better reproducibility with similar sensitivity. Small amount of sample, 22 μL, was required for a measurement. The limit of quantification for epinephrine was obtained to be ~10?9 g/mL after optimization.

비섬유소 인조 섬유의 일광 안정도 증진에 관한 연구 (A Study on the Light Stability Increasement of Non-Cellulosic Fiber)

  • 육영수;안태완
    • 기술사
    • /
    • 제9권1호
    • /
    • pp.35-39
    • /
    • 1976
  • Possible methods of protection of non cellulosic fibers, particularly nylon filament yarn, from the damaging effects of light are discussed. Manganese acetate, cupricacetate, G1-06-196 and sodium phosphate are used as a light stabilizer for nylon filament yarn. The light stability of filament containing different weight of TiO$_2$ is increased as the following order: Bright>Semi-Dull>Full-Dull The protection effect against light according to the present of the light stabilizer in filament increased in the following order: Manganese acetate> Cupric acid> G1-06-196> Sodium phosphate Manganese acetate is shown to be the most effecting salt for protecting nylon against light. 15 ppm of the salt is shown to be effective enough for protecting nylon filament yarn against light.

  • PDF

해바라기씨중의 식용단백질에 관한 연구 -단백질의 분리 및 그의 화학적 조성에 관한 연구- (Isolation of Sunflower Seed Protein and its Chemical Composition)

  • 조성희;김준평
    • 한국식품과학회지
    • /
    • 제9권2호
    • /
    • pp.153-156
    • /
    • 1977
  • 한국에서 재배된 해바라기(Helianthus annus)씨 단백질의 화학적 성질을 규명하고자 이의 염용해성 단백질을 추출한 다음 정제하여 주단백질을 분리하여 본 결과 1. 염용해성 단백질의 추출용매는 10% 염화나트륨을 함유한 0.02M sodium phosphate buffer가 가장 좋았다. 2. 해바라기씨 단백질의 필수아미노산 조성은 비교적 양질인 것으로 나타났다. 3. 염용해성단백질의 disc전기이동에서 7개의 band를 나타내었다. 4. 염용해성단백질의 주단백질은 Sephadex G-150과 A-25 column으로 정제하여 얻을 수 있었다. 4. 주단백질의 분자량은 약 86,000이였다.

  • PDF

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.

인산염 조합에 따른 Transglutaminase를 첨가한 저염 돈육 목심 세절육의 물성 증진 효과 (Evaluation of Textural Properties of Low-salt Pork Shoulder Comminuted Meats with Transglutaminase under Phosphate Combinations)

  • 김형상;진구복
    • 한국축산식품학회지
    • /
    • 제30권2호
    • /
    • pp.298-304
    • /
    • 2010
  • 본 연구는 돈육 목심 세절육에서 식염함량의 저하에 따른 기능성 및 조직감을 분석하였고, 저염 육제품의 transglutaminase(TG)와 두 종류의 인산염(sodium polyphosphate, STPP; sodium pyrophosphate, SPP)을 첨가하여 저염 돈육제품의 물성을 증진시키기 위해 수행되었다. 식염함량에 따른 목심 균질육의 특성을 평가한 실험 1에서는 식염함량이 증가함에 따라 지방 함량, 명도 그리고 황색도는 감소한(p<0.05), 반면, 수분 함량과 가열수율은 증가하였다(p<0.05). 실험 1의 결과에 따라 1.0% 식염함량을 저염조건으로 저염 돈육 목심 세절육에서 TG와 두 종류의 인산염(STPP, SPP)의 단일 혹은 복합첨가 효과를 조사하였다(실험2). 실험 2에서는 인산염을 첨가함에 따라 pH가 유의적으로 상승하였으며(p<0.05), 특히 SPP가 단일 또는 STPP와 혼합하여 첨가된 처리구는 STPP를 단일 첨가한 처리구에 비해 높은 pH값을 보였다(p<0.05). TG와 인산염을 첨가한 처리구들은 대조구 보다는 낮고 인산염 무첨가구 보다는 높은 가열수율의 결과를 나타냈다(p<0.05). 조직감 검사에서는 탄력성 항목에서 SPP를 단일 첨가한 처리구가 대조구보다 높은 값을 나타냈다(p<0.05). 따라서 저염 조건에서 인산염의 첨가를 통한 가열수율의 저하를 보완하고, TG 첨가를 통하여 조직감을 증진시켜 기능성 저염 육제품의 제조가 가능할 것으로 사료된다.

석탄회로부터 뮬라이트 단섬유의 제조 (Fabrication of Mullite Short Fibers from Coal Fly Ash)

  • 김병문;박영민;유승우;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

인공하수 조성 성분에 따른 SBR 처리 공정의 효율에 관한 연구 (A Study on Efficiency of SBR Process by Composition of Artificially Wastewater)

  • 이장훈;장승철;권혁구;김동욱
    • 한국환경보건학회지
    • /
    • 제31권2호
    • /
    • pp.99-106
    • /
    • 2005
  • The removals of organic matter, nitrogen and phosphate in wastewater were investigated with Sequencing Batch Reactor (SBR). Glucose and sodium acetate were Used for organic carbon source so as to know nutrient removal efficiency in proportion to MLSS concentration. In the case of glucose, the COD removal rate was $74\%,\;41\%\;and\;66\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was $57\%,\;21\%\;and\;38\%$, the T-N was $24\%,\;13\%\;and\;44\%$, and the T-P was $12\%,\;21\%\;and\;33\%$. As a result, the removal rate of organic materials showed the finest remove when MLSS was 5000, but the nutrient removal rate appeared as was best when MLSS was 1000. In the case of sodium acetate, the COD removal rate was $83\%,\;81\%\;and\;86\%$ in MLSS 5000, 3000 and 1000, respectively. On equal terms, the BOD was appeared by $76\%,\;82\%\;and\;92\%$, the T-N $57\%,\;42\%\;and\;78\%$, and the T-P $48\%,\;52\%\;and\;38\%$. As a result, organic and T-N removal rates were best when MLSS was 1000. But, the T-P removal rates were best when MLSS was 3000. Glucose was shown fast removal in reaction beginning, but screened by more efficient thing though sodium acetate removes organic matter, nitrogen and phosphate. Form of floc was ideal in all reactors regardless of carbon source and MLSS concentration. And its diameter was about $200\~500{\mu}m$.

아르기닌 또는 인산일수소나트륨이 수용액중에서 오메프라졸의 안정성에 미치는 영향 비교 (Effect of Arginine or Sodium Phosphate Dibasic on the Stability of Omeprazole in Aqueous Solution)

  • 심창구;한용해;우종수;이창현
    • Journal of Pharmaceutical Investigation
    • /
    • 제23권4호
    • /
    • pp.225-229
    • /
    • 1993
  • The stability of omeprazole in the aqueous solutions containing arginine or sodium phosphate dibasic(SPD) was examined at 30, 40 and $50^{\circ}C$. Arginine or anhydrous SPD was added to omeprazoie solution ($200{\mu}g/\;ml$ in distilled water) to yield $100{\mu}g/\;ml$ concentration of each. Then, the solution was kept at 30, 40 or $50^{\circ}C$ for 90 hrs. Aliquots of the solution were withdrawn at specified time intervals and assayed by HPLC for intact omeprazole. The remaining percentage-time curves revealed that omeprazole was degraded rapidly as funtions of time and temperature following pseudo first-order kinetics. The rate constant in the SPD solution was much higher than in the arginine solution. In other words. the degradation half-lives of omeprazole at $30^{\circ}C$, for example, was 148 and 76 hr in arginine and SPD solutions respectively. The initial pH of the solution containing $100{\mu}g/\;ml$ of arginine or SPD was 9.7 or 8.7, respectively. Since omeprazole is more stable as the pH of its solution becomes more alkaline, the longer half-life of omeprazole in arginine solution could be explained by the more alkaline characteristics of arginine than SPD in the solution. The activation energy necessary for the degradation reaction was almost identical in both solutions, indicating similar degradation mechanisms of omeprazole in the solutions. In conclusion, omprazole was more stable in the presence of arginine than of SPD.

  • PDF

비정질 칼슘 포스페이트 나노 입자의 합성과 특성 (Synthesis and Characterization of Amorphous Calcium Phosphate Nanoparticles)

  • 한지훈;정성욱
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.740-745
    • /
    • 2018
  • 본 연구에서는 비정질 칼슘 포스페이트(ACP) 나노 입자의 합성과 특성 분석을 진행하였다. 염화칼슘(calcium chloride ($CaCl_2$))과 아데노신 인산나트륨(disodium adenosine triphosphate ($Na_2ATP$)) 그리고 피트산 나트륨(sodium phytate) 첨가제를 열수 반응을 통해 상대적으로 단분산된 100 nm 크기 이하의 ACP 나노 입자를 성공적으로 합성하였고 나노 입자의 화학적 조성과 구조를 재료 분석을 통해 확인하였다. 피트산 나트륨 첨가제의 사용을 통해 얻은 ACP 나노 입자는 비정질성을 유지하고 결정성 하이드록시아파타이트(HAP)로의 전환을 방지하는 안정성이 향상되었음을 발견하였다. 본 연구를 통해 발견된 향상된 안정성을 가지는 ACP 나노 입자는 재생 의학 분야에서의 생체 적합 물질로의 응용에 중요한 잠재적 용도가 있을 것이라 사료된다.

최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상 (Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions)

  • 김지훈;홍선우;김진우;손병락;김미경;김용환;설진현;전수환
    • 한국해양바이오학회지
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.