• Title/Summary/Keyword: sodium ions

Search Result 415, Processing Time 0.031 seconds

Desalinization Effect of Pennisetum Alopecuroides and Characteristics of Leachate Depending on Calcium Chloride (CaCl2) Concentration

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.445-453
    • /
    • 2020
  • Background and objective: Calcium chloride (CaCl2) and sodium chloride (NaCl) are commonly used as a deicing agent in South Korea and penetrate the soil on the roadside, causing damage to plants. This study was conducted to investigate the salinity reduction effect of Pennisetum alopecuroides and the chemical characteristics of soil leachate. Methods: The plants were treated with five different concentrations of CaCl2 (0, 1, 2, 5, and 10g·L-1) and were grouped into the Cont., C1, C2, C5, and C10 groups. CaCl2 of 200 m·L-1 was sprayed to each plant once every two weeks. The growth of P. alopecuroides (plant height, leaf length, leaf width and the number of leaves) was measured. The level of EC and pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) in the leachate of soil was monitored. Results: The pH of soil leachate decreased as the CaCl2 concentration increased, and the EC increased significantly. The content of K+ did not change significantly until the concentration of CaCl2 reached 5 g·L-1, but the content of Ca2+, Na+, and Mg2+ significantly increased. The plant height, leaf length, and leaf width of P. alopecuroides showed the highest value in CaCl2 1 g·L-1 followed by CaCl2 2 g·L-1 and the control group. Root fresh weight was the highest in CaCl2 2 g·L-1. On the other hand, there was no change in the shoot fresh weight, dry weight and root dry weight, and P. alopecuroides growth inhibition at the concentration of 5 g·L-1 or higher in the plant height and leaf length. Conclusion: P. alopecuroides is relatively highly salt-tolerant and can improve the salt damaged soil by lowering the content of the salt-based exchangeable K+ ions.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF

Characterization of Nitric Oxide (NO)-Induced Cell Death in Lung Epithelial Cells (폐상피세포에서 Nitric Oxide (NO)에 의한 세포사에 관한 연구)

  • Yong, Wha Shim;Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.187-197
    • /
    • 2004
  • Background : Nitric Oxide (NO) is a multi-faceted molecule with dichotomous regulatory roles in many areas of biology. NO can promote apoptosis in some cells, whereas it inhibits apoptosis in other cell types. This study was performed to characterize NO-induced cell death in lung epithelial cells and to investigate the roles of cell death regulators including iron, bcl-2 and p53. Methods : A549 cells were used for lung epithelial cells. SNP (sodium nitroprusside) and SNAP (S-nitroso-N-acetyl- penicillamine) were used for NO donor. Cytoxicity assay was done by MTT assay and crystal violet assay. Apoptotic assay was done by fluorescent microscopy after double staining with propidium iodide and hoecst 33342. Iron inhibition study was done with RBCs and FeSO4. For bcl-2 study, bcl-2 overexpressing cells (A549-bcl-2) were used and for p53 study, Western blot analysis and p53 functionally knock-out cells (A549-E6) were used. Results : SNP and SNAP induced dose-dependent cell death in A549 cells and fluorescent microscopy revealed that SNAP induced apoptosis in low doses but necrosis in high doses while SNP induced exclusively necrotic cell death. Iron inhibition study using RBCs and FeSO4 significantly blocked SNAP-induced cell death. And also SNAP-induced cell death was blocked by bcl-2 overexpression. Finally, we found that SNAP activate p53 by Western blot analysis and that SNAP-induced cell death was decreased in the abscence of p53. Conclusion : In lung epithelial cells, NO can induce cell death, more precisely apoptosis in low doses and necrosis in high doses. And iron, bcl-2, and p53 play important roles in NO-induced cell death.

Surface characteristics and stability of implants treated with alkali and heat (알칼리와 열처리에 의한 임플란트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Song, Yun-Seok;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.490-499
    • /
    • 2008
  • Statement of problem: Bioactive materials must have the ability to spontaneously form a bone like apatite layer on their surface and induce direct biochemical bonding to bone. A simple chemical treatment via alkali and heat has been revealed to induce bioactivity in titanium. Purpose: The purpose of this study was to evaluate the surface characteristics and stability of alkali and heat treated implants. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface implants, groups 2 and 3 were treated with alkali solutions and heat treated in the atmosphere and vacuum conditions respectively. The surface characteristics were observed with FESEM, XPS, TF-XRD and AFM. Stability was evaluated with the resonance frequency analysis, periotest and removal torque values. One-way ANOVA and Duncan test were used for statistical analysis. Results: 1. Groups treated with alkali and heat showed similar characteristics. Groups 2 and 3 showed high compositions of Na ions on the surface with sub-micron sized pores compared to group 1. Group 2 showed mixed compositions of anatase and rutile with superior contents of rutile. 2. Resonance frequency analysis : The ISQ of group 2 showed significantly higher values than that of groups 1 and 3 at 12 weeks. The ISQ of groups 1 and 2 showed significant increase after 4 weeks, and the ISQ of group 3 increased significantly after 2 and 4 weeks respectively (P < .05). 3. Periotest: The PTV of groups 1 and 2 showed significant decrease after 4 weeks, and the PTV of group 3 showed significant decrease after 2 and 4 weeks respectively (P < .05). 4. Removal torque analysis: The removal torque value of group 2 was significantly higher than those of groups 1 and 3 at 2, 4 and 8 weeks. The removal torque values of groups 1 and 3 showed increase at 4 and 12 weeks, but the removal torque value of group 2 showed increase after 4 weeks (P < .05). Conclusion: An oxide layer with appropriate crystal structure and amorphous sodium titanate layer can be obtained on titanium implants through alkali and heat treatment in the atmosphere, and even alkali and heat treatment in vacuum conditions, provided a bioactive surface containing sodium. These surface layers can be considered to be effective for enhancement of osseointegration and reduction of healing period for implant treatment.

Effect of Nitrogen Sources on the Yields and the Ionic Balance of Mulberry(Morus alba L.) Leaves (시용질소(施用窒素)의 형태(形態)가 뽕잎 생산량(生産量) 및 이온 균형(均衡)에 미치는 영향(影響))

  • Lee, Won-Chu;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.117-127
    • /
    • 1982
  • Mulberry plants (Morus alba L.) were grown in pots with the following different nitrogen sources: ammonium sulphate, urea, ammonium nitrate, sodium nitrate + ammonium nitrate ($NO_3:NH_4$=2:1), and sodium nitrate. The effects of the nitrogen sources on mulberry yields, nitrogen recovery, distribution of ions and cation-anion balance (C-A) along leaf sequence and growth stage were investigated. The results were as follows: 1. Leaf yields and nitrogen recovery decreased with increasing $NO_3$-N application rates. 2. Relative cation contents in leaves in the early growth stages showed the following pattern : Na < Mg < Ca < K. However, the order of Ca and K reversed in the later stages. The order of anion contents chifted from $SO_4$ < $NO_3$ < Cl < $H_2PO_4$ in the early stages to $NO_3$ < Cl < $SO_4$ < $H_2PO_4$ in the later stages. 3. Contents of K, $H_2PO_4$, $SO_4$, $NO_3$, T-N and the sum of anion contents (${\sum}A$) were higher in upper leaves whereas Ca, Mg, Cl, the sum of cation contents (${\sum}C$) and (C-A) were higher in lower leaves. 4. When $NO_3$ in leaves decreased, Cl and K as counter-cations increased and consequently Ca decreased. 5. The (C-A) in leaves varied with leaf sequence and growth stage from 700 to 900 me/kg D.M.

  • PDF

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics II. Jungwon and Munkyeong Areas (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 II. 중원 및 문경 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Choi, Hyen-Su;Youm, Seung-Jun;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.201-213
    • /
    • 1998
  • From the Jungwon and Munkyeong areas which are among the famous producers of the carbonate-type groundwaters in Korea, various kinds of natural waters (deep groundwater, shallow groundwater and surface water) were collected between 1996 and 1997 and were studied for hydrogeochemical and environmental isotope (${\delta}^{34}S_{so4}$, ${\delta}^{18}O$, ${\delta}D$)systematics. Two types of deep groundwaters (carbonate type and alkali type) occur together in the two areas, and each shows distinct hydrogeochemical and environmental isotope characteristics. The carbonate type waters show the hydrochemical feature of the 'calcium(-sodium)-bicarbonate(-sulfate) type', whereas the alkali type water of the 'sodium-bicarbonate type'. The former type waters are characterized by lower pH, higher Eh, and higher amounts of dissolved ions (especialJy, $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $HCO_3{^-}$ and $SO_4{^{2-}}$). Two types of deep groundwaters are all saturated or supersaturated with respect to calcite. Two types of deep groundwaters were both derived from pre-thermonuclear (about more than 40 years old) meteoric waters (with lighter 0 and H isotope data than younger waters, i.e., shallow cold groundwaters and surface waters) which evolved through prolonged water-rock interaction. Based on the geologic setting, water chemistry, and environmental isotope data, however, each of these two different types of deep groundwaters represents distinct hydrologic and hydrogeochemical evolution at depths. The carbonate type groundwaters were formed through mixing with acidic waters that were derived from dissolution of pyrites in hydrothermal vein ores (for the Jungwon area water) or in anthracite coal beds (for the Munkyeong area water). If the deeply percolating meteoric waters did not meet pyrites during the circulation, only the alkali type groundwaters would form. This hydrologic and hydrogeochemical model may be successfully applied to the other carbonate type groundwaters in Korea.

  • PDF

The Chemical Composition of the Nagdong River Downstream Water (낙동강 하류수의 수질조성에 대하여)

  • WON Jong Hun;LEE Bae Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.47-58
    • /
    • 1981
  • Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.

  • PDF

Effect of Na+ ion on Changes in Hydraulic Conductivity and Chemical Properties of Effluent of Reclaimed Sandy Soil Column (토양중 Na+ 이온이 간척지 토주의 수리전도도와 용출수의 화학성 변화에 미치는 영향)

  • Ryu, Jin-Hee;Chung, Doug-Young;Yang, Chang-Hyu;Lee, Sang-Bok;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.454-459
    • /
    • 2009
  • In order to identify the effect of soil salinity on saturated hydraulic conductivity in reclaimed paddy soils, we established the soil columns uniformly packed with soils collected at every 20 cm up to 60 cm from the reclaimed paddy area with high and low salinity which has been cultivated rice plants for the last 30 years. The soil textures were sandy loam and loamy sand for high-salinity and low-salinity topsoils, respectively. For high-salinity and low-salinity soils the ECes were ranged from 25.2 to $37.8dS\;m^{-1}$ and 3.0 to $3.4dS\;m^{-1}$ while the ESPs were ranged from 7.70 to 20.84 % and from 5.12 to 11.33 %, respectively. The bulk densities of the soil columns were adjusted to $1.15{\pm}0.03g\;cm^{-3}$. The results of the soil column experiments shows that the stabilized saturated hydraulic conductivity of low-salinity soil was $0.62cm\;hr^{-1}$ at the topsoil while there were little water flow at the bottom of the soil columns packed with high-salinity soils. After removal of $Na^+$ ions with $1N\;NH_4OAc$ from the high-salinity soil, Ksat of the saline soil was drastically increased to $0.23cm\;hr^{-1}$. Soil columns of high-salinity topsoil treated with four different concentration of NaCl influent after removal of soluble and exchangeable cations with $1N\;NH_4OAc$ show Ksat in the range of $0.1{\sim}0.15cm\;hr^{-1}$ and the Ksat slightly decreased as the concentration of NaCl influent was increasing. Conclusively, we could assume that $Na^+$ can be significantly contributed to the saturated hydraulic conductivity in newly reclaimed sandy soil.