• 제목/요약/키워드: sod gene

검색결과 226건 처리시간 0.024초

Superoxide Dismutase Gene Expression Induced by Lipopolysaccharide in Alveolar Macrophage of Rat (폐포대식세포에서 내독소 자극에 의한 Superoxide Dismutase 유전자발현의 조절 기전)

  • Park, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Hyun, In-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • 제42권4호
    • /
    • pp.522-534
    • /
    • 1995
  • Background: In the pathogenesis of acute lung injury induced by lipopolysaccharide(LPS), oxygen radiclls are known to be involved in one part. Superoxide dismutase(SOD) protects oxygen radical-induced tissue damage by dismutating superoxide to hydrogen peroxide. In eukaryotic cells, two forms of SOD exist intracellularly as a cytosolic, dimeric copper/zinc-containing SOD(CuZnSOD) and a mitochondrial, tetrameric manganese-containing SOD(MnSOD). But there has been little information about SOD gene expression and its regulation in pulmonary alveolar macrophages(PAMs). The objective of this study is to evaluate the SOD gene expression induced by LPS and its regulation in PAMs of rat. Method: In Sprague-Dawley rats, PAMs obtained by broncholaveolar lavage were purified by adherence to plastic plate. To study the effect of LPS on the SOD gene expression of PAMs, they were stimulated with different doses of LPS($0.01{\mu}g/ml{\sim}10{\mu}g/ml$) and for different intervals(0, 2, 4, 8, 24hrs). Also for evaluating the level of SOD gene regulation actinomycin D(AD) or cycloheximide(CHX) were added respectively. To assess whether LPS altered SOD mRNA stability, the rate of mRNA decay was determined in control group and LPS-treated group. Total cellular RNA extraction by guanidinium thiocyanate/phenolfchlorofonn method and Northern blot analysis by using a $^{32}P$-labelled rat MnSOD and CuZnSOD cDNAs were performed. Results: The expression of mRNA in MnSOD increased dose-dependently, but not in CuZnSOD. MnSOD mRNA expression peaked at 8 hours after LPS treatment. Upregulation of MnSOD mRNA expression induced by LPS was suppressed by adding AD or CHX respectively. MnSOD mRNA stability was not altered by LPS. Conclusion: These findings show that PAMs of rat could be an important source of SOD in response to LPS, and suggest that their MnSOD mRNA expression may be regulated transcriptionally and require de novo protein synthesis without affecting mRNA stability.

  • PDF

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2405-2409
    • /
    • 2011
  • The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.

Molecular Cloning and Characterization of Mn-Superoxide Dismutase Gene from Candida sp.

  • Hong, Yun-Mi;Nam, Yong-Suk;Choi, Soon-Yong
    • Journal of Microbiology
    • /
    • 제35권4호
    • /
    • pp.309-314
    • /
    • 1997
  • The manganese-containing superoxide dismutase (MnSOD) is a major component of the cellular defence mechanisms against the toxic effects of the superoxide radical. Within the framework of studies on oxidative stress=responsible enzymes in the Candida sp., the gene encoding the MnSOD was isolated and examined in this study. A specific primer was designed based on conserved regions of MnSOD sequences from other organisms, and was used to isolate the gene by PCR on reverse-transcribed Candida poly($A^{+}$) RNA. The PCR product was used to screen a Candida genomic lambda library and the nucleotide wequence of positive clone was determined. The deduced primary sequence encodes a 25kDa protein which has the conserved residues for enzyme activity and metal binding. The 28 N-terminal amino acids encoded by the Candida cDNA comprise a putatice mitochondrial transit peptide. Potential regulatory elements were identified in the 5' flanking sequences. Northern blot analysis showed that the transcription of the MnSOD gene is induced 5-to 10-fold in response to mercury, cadmium ions and hydrogen peroxide.

  • PDF

Effect of Green Tea on Gene Expression of Superoxide Dismutase and Glutathione Peroxidase in Rat Liver Exposed to Microwaves (녹차가 전자파 조사 흰쥐 간조직의 Superoxide Dismutase 및 Glutathione Peroxidase 유전자 발현에 미치는 영향)

  • 최정화
    • Journal of Nutrition and Health
    • /
    • 제33권7호
    • /
    • pp.733-738
    • /
    • 2000
  • The purpose of this study was to investigate the effects of green tea on gene expression of superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) in rat liver exposed to microwave. Sprague-Dawley male rats with 200$\pm$10g body weight were assigned to normal and microwave exposed groups : microwave exposed groups ; microwave exposed groups were divided two groups : microwave(MW) group which was administrated the distilled water and green tea(GT) group which was administrated the green tea extracts. The rats were irradiated with microwave at frequence of 2.45 GHz for 15 min and then the gene expression in the damaged tissue were investigated at 0.1, 3, 4,6 and 8 days after the microwave irradition to compared with the normal group. The level of SOD gene expression in MW group was lower than the normal group within 6 days but that of GT group as higher than MW group. These results may imply that green tea stimulates SOD expression and there by protecting tissues from free radicals. The GSH-Px gene was expressed a little bit lower than the normal group but that of GT group was expressed to higher lever than MW group from 4 days after irradiation. These results suggest that the administration of green tea extract may activate antioxidative gene expressions such as SOD and GSH-Px in rat and that may help to recover liver tissues from microwave damage by removing hazardous free radicals and oxidized by products from cells.

  • PDF

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제14권1호
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • 제13권5호
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Extracellular Superoxide Dismutase (EC-SOD) Transgenic Mice: Possible Animal Model for Various Skin Changes

  • Kim, Sung-Hyun;Kim, Myoung-Ok;Lee, Sang-Gyu;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • 제30권4호
    • /
    • pp.229-234
    • /
    • 2006
  • We have generated transgenic mice that expressed mouse extracellular superoxide dismutase (EC-SOD) in their skin. In particular, the expression plasmid DNA containing human keratin K14 promoter was used to direct the keratinocyte-specific transcription of the transgene. To compare intron-dependent and intron-independent gene expression, we constructed two vectors. The vector B, which contains the rabbit -globin intron 2, was not effective for mouse EC-SOD overexpression. The EC-SOD transcript was detected in the skin, as determined by Northern blot analysis. Furthermore, EC-SOD protein was detected in the skin tissue, as demonstrated by Western blot analysis. To evaluate the expression levels of EC-SOD in various tissues, we purified EC-SOD from the skin, lungs, brain, kidneys, livers, and spleen of transgenic mice and measured its activities. EC-SOD activities in the transgenic mice skin were approximately 7 fold higher than in wild-type mice. These results suggest that the mouse overexpressing vector not only induces keratinocyte-specific expression of EC-SOD, but also expresses successfully functional EC-SOD. Thus, these transgenic mice appeared to be useful for the expression of the EC-SOD gene and subsequent analysis of various skin changes, such as erythema, inflamation, photoaging, and skin tumors.

Effect of Vitrification on In Vitro Maturation and Development and Gene Expression in Canine Oocytes

  • Park, Ji-Hoon;Kim, Sang-Keun
    • Reproductive and Developmental Biology
    • /
    • 제35권2호
    • /
    • pp.131-136
    • /
    • 2011
  • The in vitro maturation rate of vitrified-thawed canine oocytes was $30.8{\pm}3.4%$. The in vitro maturation rate of vitrified oocytes was lower than that of the control ($52.0{\pm}2.5%$, p<0.05). The in vitro maturation rate of vitrified-thawed oocytes were significantly (p<0.05) lower than those of fresh oocytes. The in vitro maturation and developmental rates of the vitrified-thawed oocytes were $17.5{\pm}2.5%$ and $8.8{\pm}3.4%$, respectively. This results were lower than the control group ($43.6{\pm}3.2%$ vs $20.0{\pm}3.0%$). SOD1 gene expression of 1~2 mm of follicle size were higher than those of above 6 mm follicle size. SOD2 gene expression of 1~2 mm of follicle size were significantly higher than those of above 6 mm follicle size (p<0.01). The expression pattern of SOD1, 2 was constantly expressed in both groups but strongly expressed in follicles (1~2 mm) group when compared to the above 6 mm follicles. SOD gene expression between groups the fresh and vitrified oocytes groups were significant differences in rates. However, RGS gene expression between groups the fresh and vitrified oocytes groups were no significant differences in rates.

Molecular Cloning and High-Level Expression of Human Cytoplasmic Superoxide Dismutase Gene in Escherichia coli (사람의 세포질 Superoxide Dismutase 유전자의 클로닝과 대장균내에서의 대량발현에 관한 연구)

  • 이우길;김영호;양중익;노현모
    • Korean Journal of Microbiology
    • /
    • 제28권2호
    • /
    • pp.91-97
    • /
    • 1990
  • Complementary DNA (cDNA) coding for human cytoplasmic superoxide dismutase (SOD1) (superoxide: superoxide oxidoreductase E.C.1.15.1.1) was isolated from human liver cDNA library of $\lambda$gt11 by in situ plaque hybridization. The insery cDNA gas the 5' untranslational region (UTR) and 3'UTR of SOD1 gene. Polymerase Chain Reaction (PCR) method was used fro subcloning of SOD1 structural gene. Using synthetic sense strand primer (24mer) containing a start codon and antisense strand primer (24mer), SOD1 structural gene was selectively amplified. Amplified DNA was directly cloned into the HincII site of pUC19 plasmid. Insery cDNA was subcloned into M13 mp19 and sequenced by dideowy chain termination method with Sequenase. The nucleotide sequence of insert cDNA had an open reading frame (ORF) coding for 153 amino acid residues. The structural gene of cytoplasmic SOD was placed under the control of bacteriophage $\lambda P_{L}$ regulatory sequences, generating a highly efficient expression plasmid. The production of human SOD1 in E. coli cells was about 7% of total cellular proteins and recombinant human SOD1 possessed its own enzymatic acitivity.

  • PDF

Examination of the Antioxidant Potential of Pycnogenol under Conditions of Oxidative Stress in Escherichia coli Mutants Deficient in HP1 and Superoxide Dismutase Activities

  • Youm, Jeong-A;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • 제41권1호
    • /
    • pp.28-33
    • /
    • 2003
  • Pycnogenol (PYC) is believed to have potential as a therapeutic agent against free radical-mediated oxidative stress. It is important, therefore, to understand the interactions between PYC and cellular defenses against oxidative stress. Toward this end, we analyzed the survival rates on the gene expression responses of E. coli sod katG mutants to PYC after pre-treatment of PQ or H$_2$O$_2$-mediated stress under aerobic conditions. We identified SOD induced by PYC, but not HP1 in sod hate mutants. A striking result was the PYC induction of SOD with antioxidant property in single katG mutant cells, particularly MnSOD and CuZnSOD. These inductions were further increased with oxidative stress, while HP1 was not induced in these conditions. The effects of pycnogenol treatment on these cells depend in part on its concentration on the stress response. Protective effects of PYC exposure which affected gene expression in cells were consistent with cell survival rates. Our results demonstrate that pycnogenol may alter the stress response gene expression in a specific manner such as SOXRS because PYC induction of single mutant only worked under increased PQ stress. All together our data indicate that SOD activity is essential for the cellular defense against PQ-mediated oxidative stress, suggesting that PYC may not be effective as an antioxidant in only oxidative stress conditions. On the other hand, it was expected that PYC may play a role as a pro-oxidant and if it is available for use, it should be evaluated carefully.