• 제목/요약/키워드: society of sensitivity

검색결과 12,024건 처리시간 0.042초

퇴화최적해에서 일반감도분석 (Generalized Sensitivity Analysis at a Degenerate Optimal Solution)

  • 박찬규;김우제;박순달
    • 한국경영과학회지
    • /
    • 제25권4호
    • /
    • pp.1-14
    • /
    • 2000
  • The methods of sensitivity analysis for linear programming can be classified in two types: sensitivity analysis using an optimal solution, and sensitivity analysis using an approximate optimal solution. As the methods of sensitivity analysis using an optimal solution, there are three sensitivity analysis methods: sensitivity analysis using an optimal basis, positive sensitivity analysis, and optimal partition sensitivity analysis. Since they may provide different characteristic regions under degeneracy, it is not easy to understand and apply the results of the three methods. In this paper, we propose a generalized sensitivity analysis that can integrate the three existing methods of sensitivity analysis. When a right-hand side or a cost coefficient is perturbed, the generalized sensitivity analysis gives different characteristic regions according to the controlling index set that denotes the set of variables allowed to have positive values in optimal solutions to the perturbed problem. We show that the three existing sensitivity analysis methods are special cases of the generalized sensitivity analysis, and present some properties of the generalized sensitivity analysis.

  • PDF

Zwicker 라우드니스에 대한 설계 민감도 해석 및 최적화 (DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION OF ZWICKER'S LOUDNESS)

  • 강정환;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2004
  • The design sensitivity analysis of Zwicker's loudness with respect to structural sizing design variables is developed. The loudness sensitivity in the critical band is composed of two equations, the derivative of main specific loudness with respect to 1/3-oct band level and global acoustic design sensitivities. The main specific loudness is calculated by using FEM, BEM tools. i.e. MSC/NASTRAN and SYSNOISE. And global acoustic sensitivity is calculated by combining acoustic and structural sensitivity using the chain rule. Structural sensitivity is obtained by using semi-analytical method and acoustic sensitivity is implemented numerically using the boundary element method. For sensitivity calculation, sensitivity analyzer of loudness (SOLO), in-house program is developed. A 1/4 scale car cavity model is optimized to show the effectiveness of the proposed method.

  • PDF

On the Relationship between $\varepsilon$-sensitivity Analysis and Sensitivity Analysis using an Optimal Basis

  • Park, Chan-Kyoo;Kim, Woo-Je;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • 제10권2호
    • /
    • pp.103-118
    • /
    • 2004
  • $\epsilon$-sensitivity analysis is a kind of methods for performing sensitivity analysis for linear programming. Its main advantage is that it can be directly applied for interior-point methods with a little computation. Although $\epsilon$-sensitivity analysis was proposed several years ago, there have been no studies on its relationship with other sensitivity analysis methods. In this paper, we discuss the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using an optimal basis. First. we present a property of $\epsilon$-sensitivity analysis, from which we derive a simplified formula for finding the characteristic region of $\epsilon$-sensitivity analysis. Next, using the simplified formula, we examine the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using optimal basis when an $\epsilon$-optimal solution is sufficiently close to an optimal extreme solution. We show that under primal nondegeneracy or dual non degeneracy of an optimal extreme solution, the characteristic region of $\epsilon$-sensitivity analysis converges to that of sensitivity analysis using an optimal basis. However, for the case of both primal and dual degeneracy, we present an example in which the characteristic region of $\epsilon$-sensitivity analysis is different from that of sensitivity analysis using an optimal basis.

주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석 (Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain)

  • 백문열;기창두
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

AERODYNAMIC SENSITIVITY ANALYSIS FOR NAVIER-STOKES EQUATIONS

  • Kim, Hyoung-Jin;Kim, Chongam;Rho, Oh-Hyun;Lee, Ki Dong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.161-171
    • /
    • 1999
  • Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct differentiation method and an adjoint method respectively from discrete two-dimensional compressible Navier-Stokes equations. Unlike previous other researches, Baldwin-Lomax algebraic turbulence model is also differentiated by hand to obtain design sensitivities with respect to design variables of interest in turbulent flows. Discrete direct sensitivity equations and adjoint equations are efficiently solved by the same time integration scheme adopted in the flow solver routine. The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time by allowing the large banded flux jacobian matrix unassembled. Direct sensitivity code results are found to be exactly coincident with sensitivity derivatives obtained by the finite difference. Adjoint code results of a turbulent flow case show slight deviations from the exact results due to the limitation of the algebraic turbulence model in implementing the adjoint formulation. However, current adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior researches.

  • PDF

디지털 흉부단층합성검사에서 감도와 관전압 변화에 따른 영상 최적화 (Optimization of Image Quality according to Sensitivity and Tube Voltage in Chest Digital Tomosynthesis)

  • 김상현
    • 한국방사선학회논문지
    • /
    • 제12권4호
    • /
    • pp.541-547
    • /
    • 2018
  • 흉부 디지털 단층합성(chest digital tomosynthesis, CDT) 검사 시 관전압 및 감도(sensitivity) 변화에 의한 선량감소 효과와 정량적 평가로 선량 최적화 조건을 평가하고자 한다. 관전압 125 kV, 135 kV 설정에 따른 sensitivity 200, 320, 400 변화하여 팬텀의 CDT 영상을 획득하였다. 감도와 관전압 변화 따른 선량과 면적선량(DAP)을 평가하였다. 화질평가는 최대신호 대 잡음비(PSNR), 대조도 대 잡음비(CNR), 신호 대 잡음비(SNR)를 image J를 이용하여 분석하였다. 선량은 14~23%, 면적선량은 13~26% 정도 sensitivity 200, 125 kV에 비해 측정치가 낮아졌고, sensitivity 가 높아짐에 따라 감소율 커짐을 알 수 있었다. PSNR은 27dB 이상으로 모두 의미 있는 수치였고, CNR, SNR은 sensitivity가 낮을수록 우수했으나, 항목마다 통계의 유의성은 달랐다. CNR과 SNR 모두 sensitivity 320, 135 kV가 sensitivity 200, 125 kV와 통계적으로 유의하지 않았다(p>0.05). CDT는 감도, 관전압과 디지털 촬영의 장비의 장점인 보정능력을 이용하여 더 작은 선량으로 화질을 유지 시킬 수 있다.

등제한조건을 이용한 목적함수에 대한 최적민감도 (Optimum Sensitivity of Objective Function Using Equality Constraint)

  • 신정규;이상일;박경진
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1629-1637
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

NASTRAN을 이용한 고유치 문제의 설계 민감도 해석 (Design Sensitivity Analysis of Eigen Problem Using NASTRAN)

  • 윤광수;이태희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.508-512
    • /
    • 1997
  • Design sensitivity analysis of Eigen Problem give systematic design improvement information for noise and vibration of a system. Based on reliable results form commercial FE code(UAI/NASTRAN), three computational procedures for design sensitivity analysis of eigen problem are suggested. Those methods are finite difference,design sensitivity analysis using external module and design sensitivity analysis running with NASTRAN. To verify the suggested methods, a numerical example is given and these results are compared with the results from UAI/NASTRAN eigen sensitivity option. We can conclude that design sensitivity coefficient of eigen proplems can be computed outside of the FE code as easy as inside of the FE code.

  • PDF

수송체 구조물의 진동특성에 관한 설계민감도 해석 (Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure)

  • 이재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

등제한조건을 이용한 목적함수에 대한 최적민감도 (Optimum Sensitivity of Objective Function using Equality Constraint)

  • 이상일;신정규;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF