• Title/Summary/Keyword: social search

Search Result 969, Processing Time 0.029 seconds

Personalized and Social Search by Finding User Similarity based on Social Networks (소셜 네트워크 기반 사용자 유사성 발견을 통한 개인화 및 소셜 검색)

  • Park, Gun-Woo;Oh, Jung-Woon;Lee, Sang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.683-690
    • /
    • 2009
  • Social Networks which is composed of network with an individual in the center in a web support mutual-understanding of information by searching user profile and forming new link. Therefore, if we apply the Social Network which consists of web users who have similar immanent information to web search, we can improve efficiency of web search and satisfaction of web user about search results. In this paper, first, we make a Social Network using web users linked directly or indirectly. Next, we calculate Similarity among web users using their immanent information according to topics, and then reconstruct Social Network based on varying Similarity according to topics. Last, we compare Similarity with Search Pattern. As a result of this test, we can confirm a result that among users who have high relationship index, that is, who have strong link strength according to personal attributes have similar search pattern. If such fact is applied to search algorithm, it can be possible to improve search efficiency and reliability in personalized and social search.

Levelized Data Processing Method for Social Search in Ubiquitous Environment (유비쿼터스 환경에서 소셜 검색을 위한 레벨화된 데이터 처리 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • Social networking services have changed the way people communicate. Rapid growth of information generated by social networking services requires effective search methods to give useful results. Over the last decade, social search methods have rapidly evolved. Traditional techniques become unqualified because they ignore social relation data. Existing social recommendation approaches consider social network structure, but social context has not been fully considered. Especially, the friend recommendation is an important feature of SNSs. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose a levelized data processing method for social search in ubiquitous environment. We study previous researches about social search methods in ubiquitous environment. Our method is a new paradigm of levelelized data processing method which can utilize information in social networks, using location and friendship weight. Several experiments are performed and the results verify that the proposed method's performance is better than other existing method.

A Social Search Scheme Considering User Preferences and Popularities in Mobile Environments

  • Bok, Kyoungsoo;Lim, Jongtae;Ahn, Minje;Yoo, Jaesoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.744-768
    • /
    • 2016
  • As various pieces of information can be provided through the web, schemes that provide search results optimized for individual users are required in consideration of user preference. Since the existing social search schemes use users' profiles, the accuracy of the search deteriorates. They also decrease the reliability of a search result because they do not consider a search time. Therefore, a new social search scheme that considers temporal information as well as popularities and user preferences is required. In this paper, we propose a new mobile social search scheme considering popularities and user preferences based on temporal information. Popularity is calculated by collecting the visiting records of users, while user preference is generated by the actual visiting information among the search results. In order to extract meaningful information from the search target objects that have multiple attributes, a skyline processing method is used, and rank is given to the search results by combining the user preference and the popularity with the skyline processing result. To show the superiority of the proposed scheme, we conduct performance evaluations of the existing scheme and the proposed scheme.

The Effects of Social Media Advertising on Social Search in China: Evidence from Luxury Brand

  • GAO, XING;Kim, Sang Yong;Kim, Da Yeon;Lee, Seung Min
    • Asia Marketing Journal
    • /
    • v.21 no.3
    • /
    • pp.65-82
    • /
    • 2019
  • This study examines the relationship between social media advertisement and customer interest in the context of luxury brands. Further, this study investigates the effective ways to utilize visual types (pictorial advertisement and video advertisement) and contents types (website link and hash-tag) in social media advertising by proposing a time-series model to estimate the long-term effect of social media advertising on social search. We find that the pictorial advertisements are more effective than video advertisements, which provides a different result from previous existing research. In addition, advertisements using hashtags are more effective than web links due to efficiency of the search feature. Finally, since the number of brand fans also have a positive effect on advertising interest, it is essential to utilize social media advertising for the enhancement of customers' interests. Confirming that the effectiveness of social media advertising varies depending on how the visual contents and text are presented, this research can help marketing managers to assess predicted outcomes of using various methods of social media advertising.

Applying Hebbian Theory to Enhance Search Performance in Unstructured Social-Like Peer-to-Peer Networks

  • Huang, Chester S.J.;Yang, Stephen J.H.;Su, Addison Y.S.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.591-601
    • /
    • 2012
  • Unstructured peer-to-peer (p2p) networks usually employ flooding search algorithms to locate resources. However, these algorithms often require a large storage overhead or generate massive network traffic. To address this issue, previous researchers explored the possibility of building efficient p2p networks by clustering peers into communities based on their social relationships, creating social-like p2p networks. This study proposes a social relationship p2p network that uses a measure based on Hebbian theory to create a social relation weight. The contribution of the study is twofold. First, using the social relation weight, the query peer stores and searches for the appropriate response peers in social-like p2p networks. Second, this study designs a novel knowledge index mechanism that dynamically adapts social relationship p2p networks. The results show that the proposed social relationship p2p network improves search performance significantly, compared with existing approaches.

Social Network based Podcast Search System (소셜 네트워크 기반 팟캐스트 검색시스템)

  • Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.35-43
    • /
    • 2013
  • As the number of podcast users consistently increases which is rising as a new media along with the generalization of SNS and smart devices, the necessity for advanced search service is on the rise. This study designed and implemented a system which recommends a podcast to the users who search podcast by using their social network information. Suggested social network-based podcast search system (PODSSO) collects necessary podcast information only, analyzes social network of the users and makes the users have reliable and interested podcast search results.

Social Search Scheme Considering Recent Preferences of Social Media Users (소셜 미디어 사용자의 최근 관심사를 고려한 소셜 검색 기법)

  • Song, JinWoo;Jeon, Hyeonwook;Kim, Minsoo;Kim, Gihoon;Noh, Yeonwoo;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.113-124
    • /
    • 2017
  • The existing social search has a problem that search results are not suitable for a user since it does not take into account the recency of the user profile and the interests of similar users. Therefore, studies on a social search considering a temporal attribute and the interests of other users are required. In this paper, we propose a social search scheme that takes into account the recent interests of a user by time and the interests of the most similar users. The proposed scheme analyzes the activity information of a social media user in order to take into account the recent interests of the user. And then the proposed scheme improves the satisfaction and accuracy of search results by combining the interests of similar users with the analyzed information and performing ranking, It is shown through performance evaluation that the proposed scheme outperforms the existing scheme.

Design and Implementation of Social Search System using user Context and Tag (사용자 컨텍스트와 태그를 이용한 소셜 검색 시스템의 설계 및 구현)

  • Yoon, Tae Hyun;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Recently, Social Network services(SNS) is gaining popularity as Facebook and Twitter. Popularity of SNS leads to active service and social data is to be increased. Thus, social search is remarkable that provide more meaningful information to users. but previous studies using social network structure, network distance is calculated using only familiarity. It is familiar as distance on network, has been demonstrated through several experiments. If taking advantage of social context data that users are using SNS to produce, then familiarity will be helpful to evaluate further. In this paper, reflect user's attention through comments and tags, Facebook context is determined using familiarity between friends in SNS. Facebook context is advantageous finding a friend who has a similar propensity users in context of profiles and interests. As a result, we provide a blog post that interest with a close friend. We also assist in the retrieval facilities using Near Field Communication(NFC) technology. By the experiment, we show the proposed soicial search method is more effective than only tag.

Multivariate Analysis of Factors for Search on Suicide Using Social Big Data (소셜 빅 데이터를 활용한 자살검색 요인 다변량 분석)

  • Song, Tae Min;Song, Juyoung;An, Ji-Young;Jin, Dallae
    • Korean Journal of Health Education and Promotion
    • /
    • v.30 no.3
    • /
    • pp.59-73
    • /
    • 2013
  • Objectives: The study is aimed at examining the individual reasons and regional/environmental factors of online search on suicide using social big data to predict practical behaviors related to suicide and to develop an online suicide prevention system on the governmental level. Methods: The study was conducted using suicide-related social big data collected from online news sites, blogs, caf$\acute{e}$s, social network services and message boards between January 1 and December 31, 2011 (321,506 buzzes from users assumed as adults and 67,742 buzzes from those assumed as teenagers). Technical analysis and development of the suicide search prediction model were done using SPSS 20.0, and the structural model, nd multi-group analysis was made using AMOS 20.0. Also, HLM 7.0 was applied for the multilevel model analysis of the determinants of search on suicide by teenagers. Results: A summary of the results of multivariate analysis is as follows. First, search on suicide by adults appeared to increase on days when there were higher number of suicide incidents, higher number of search on drinking, higher divorce rate, lower birth rate and higher average humidity. Second, search on suicide by teenagers rose on days when there were higher number of teenage suicide incidents, higher number of search on stress or drinking and less fine dust particles. Third, the comparison of the results of the structural equation model analysis of search on suicide by adults and teenagers showed that teenagers were more likely to proceed from search on stress to search on sports, drinking and suicide, while adults significantly tended to move from search on drinking to search on suicide. Fourth, the result of the multilevel model analysis of determinants of search on suicide by teenagers showed that monthly teenagers suicide rate and average humidity had positive effect on the amount of search on suicide. Conclusions: The study shows that both adults and teenagers are influenced by various reasons to experience stress and search on suicide on the Internet. Therefore, we need to develop diverse school-level programs that can help relieve teenagers of stress and workplace-level programs to get rid of the work-related stress of adults.

SRR(Social Relation Rank) and TS_SRR(Topic Sensitive_Social Relation Rank) Algorithm; toward Social Search (소셜 관계 랭크 및 토픽기반_소셜 관계 랭크 알고리즘; 소셜 검색을 향해)

  • Park, GunWoo;Jung, JeaHak;Lee, SangHoon
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.364-368
    • /
    • 2009
  • "소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.