소셜 네트워크(Social Network)는 웹 환경에서 개인 중심의 네트워크로 구성되어 웹 사용자별 프로파일을 탐색하고 새로운 연결을 형성함으로써 정보의 소통을 지원한다. 따라서 유사한 내재적 정보를 가진 웹 사용자들로 구성 된 소셜 네트워크를 찾아서 검색에 적용한다면 검색의 효율성과 검색 결과에 대한 웹 사용자의 만족도를 향상 시킬 수 있다. 본 논문에서는 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜 네트워크를 구성 한다. 둘째, 사용자들의 속성(Feature)에 내재된 정보를 이용하여 주제(topic)별 웹 사용자 간 유사성(Similarity)을 산정한 후, 주제(Topic)별 변화되는 유사성에 따라 소셜 네트워크를 재구성한다. 마지막으로 산정된 유사성과 웹 사용자들의 검색결과에 대한 만족도, 즉 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 주제별 유사성이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 이와 같은 사실을 검색에 적용한다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성 및 신뢰성 향상에 기여 할 수 있다.
Social networking services have changed the way people communicate. Rapid growth of information generated by social networking services requires effective search methods to give useful results. Over the last decade, social search methods have rapidly evolved. Traditional techniques become unqualified because they ignore social relation data. Existing social recommendation approaches consider social network structure, but social context has not been fully considered. Especially, the friend recommendation is an important feature of SNSs. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose a levelized data processing method for social search in ubiquitous environment. We study previous researches about social search methods in ubiquitous environment. Our method is a new paradigm of levelelized data processing method which can utilize information in social networks, using location and friendship weight. Several experiments are performed and the results verify that the proposed method's performance is better than other existing method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.744-768
/
2016
As various pieces of information can be provided through the web, schemes that provide search results optimized for individual users are required in consideration of user preference. Since the existing social search schemes use users' profiles, the accuracy of the search deteriorates. They also decrease the reliability of a search result because they do not consider a search time. Therefore, a new social search scheme that considers temporal information as well as popularities and user preferences is required. In this paper, we propose a new mobile social search scheme considering popularities and user preferences based on temporal information. Popularity is calculated by collecting the visiting records of users, while user preference is generated by the actual visiting information among the search results. In order to extract meaningful information from the search target objects that have multiple attributes, a skyline processing method is used, and rank is given to the search results by combining the user preference and the popularity with the skyline processing result. To show the superiority of the proposed scheme, we conduct performance evaluations of the existing scheme and the proposed scheme.
GAO, XING;Kim, Sang Yong;Kim, Da Yeon;Lee, Seung Min
Asia Marketing Journal
/
제21권3호
/
pp.65-82
/
2019
This study examines the relationship between social media advertisement and customer interest in the context of luxury brands. Further, this study investigates the effective ways to utilize visual types (pictorial advertisement and video advertisement) and contents types (website link and hash-tag) in social media advertising by proposing a time-series model to estimate the long-term effect of social media advertising on social search. We find that the pictorial advertisements are more effective than video advertisements, which provides a different result from previous existing research. In addition, advertisements using hashtags are more effective than web links due to efficiency of the search feature. Finally, since the number of brand fans also have a positive effect on advertising interest, it is essential to utilize social media advertising for the enhancement of customers' interests. Confirming that the effectiveness of social media advertising varies depending on how the visual contents and text are presented, this research can help marketing managers to assess predicted outcomes of using various methods of social media advertising.
Huang, Chester S.J.;Yang, Stephen J.H.;Su, Addison Y.S.
ETRI Journal
/
제34권4호
/
pp.591-601
/
2012
Unstructured peer-to-peer (p2p) networks usually employ flooding search algorithms to locate resources. However, these algorithms often require a large storage overhead or generate massive network traffic. To address this issue, previous researchers explored the possibility of building efficient p2p networks by clustering peers into communities based on their social relationships, creating social-like p2p networks. This study proposes a social relationship p2p network that uses a measure based on Hebbian theory to create a social relation weight. The contribution of the study is twofold. First, using the social relation weight, the query peer stores and searches for the appropriate response peers in social-like p2p networks. Second, this study designs a novel knowledge index mechanism that dynamically adapts social relationship p2p networks. The results show that the proposed social relationship p2p network improves search performance significantly, compared with existing approaches.
SNS와 스마트 기기가 보편화 되면서, 뉴미디어로 떠오르고 있는 팟캐스트 이용자가 계속적으로 증가함에 따라 전문 검색서비스의 필요성이 대두되고 있다. 본 연구에서는 사용자들이 팟캐스트를 검색할 때, 사용자들의 소셜 네트워크 정보를 이용하여 관심도가 높을만한 팟캐스트를 추천하는 시스템을 설계 및 구현하였다. 제안한 소셜 네트워크 기반 팟캐스트 검색시스템(PODSSO)은 필요한 팟캐스트 정보만을 웹에서 수집하고, 사용자들의 소설 네트워크를 분석하여, 사용자들에게 보다 신뢰성 있고 관심있는 팟캐스트 검색 결과를 얻을 수 있게 해준다.
기존의 소셜 검색은 사용자의 프로파일의 최신성과 유사한 사용자의 관심사를 고려하지 않기 때문에 검색 결과가 사용자에게 적합하지 않다는 문제가 있다. 이에 따라 시간적 속성과 다른 사용자의 관심사를 고려한 소셜 검색 연구가 요구되고 있다. 본 논문에서는 시간에 따른 최근 관심사, 사용자와 유사도가 높은 사용자들의 관심사를 고려한 소셜 검색 기법을 제안한다. 제안하는 기법은 사용자의 최근 관심사를 고려하기 위해 소셜 미디어 사용자의 활동 정보를 분석한다. 다른 사용자들의 관심사를 분석한 정보와 결합하여 랭킹을 수행함으로써 검색 결과의 만족도와 정확성을 향상시킨다. 성능평가를 통해 제안하는 소셜 검색 기법이 기존 기법에 비해 성능이 우수함을 보인다.
Recently, Social Network services(SNS) is gaining popularity as Facebook and Twitter. Popularity of SNS leads to active service and social data is to be increased. Thus, social search is remarkable that provide more meaningful information to users. but previous studies using social network structure, network distance is calculated using only familiarity. It is familiar as distance on network, has been demonstrated through several experiments. If taking advantage of social context data that users are using SNS to produce, then familiarity will be helpful to evaluate further. In this paper, reflect user's attention through comments and tags, Facebook context is determined using familiarity between friends in SNS. Facebook context is advantageous finding a friend who has a similar propensity users in context of profiles and interests. As a result, we provide a blog post that interest with a close friend. We also assist in the retrieval facilities using Near Field Communication(NFC) technology. By the experiment, we show the proposed soicial search method is more effective than only tag.
Objectives: The study is aimed at examining the individual reasons and regional/environmental factors of online search on suicide using social big data to predict practical behaviors related to suicide and to develop an online suicide prevention system on the governmental level. Methods: The study was conducted using suicide-related social big data collected from online news sites, blogs, caf$\acute{e}$s, social network services and message boards between January 1 and December 31, 2011 (321,506 buzzes from users assumed as adults and 67,742 buzzes from those assumed as teenagers). Technical analysis and development of the suicide search prediction model were done using SPSS 20.0, and the structural model, nd multi-group analysis was made using AMOS 20.0. Also, HLM 7.0 was applied for the multilevel model analysis of the determinants of search on suicide by teenagers. Results: A summary of the results of multivariate analysis is as follows. First, search on suicide by adults appeared to increase on days when there were higher number of suicide incidents, higher number of search on drinking, higher divorce rate, lower birth rate and higher average humidity. Second, search on suicide by teenagers rose on days when there were higher number of teenage suicide incidents, higher number of search on stress or drinking and less fine dust particles. Third, the comparison of the results of the structural equation model analysis of search on suicide by adults and teenagers showed that teenagers were more likely to proceed from search on stress to search on sports, drinking and suicide, while adults significantly tended to move from search on drinking to search on suicide. Fourth, the result of the multilevel model analysis of determinants of search on suicide by teenagers showed that monthly teenagers suicide rate and average humidity had positive effect on the amount of search on suicide. Conclusions: The study shows that both adults and teenagers are influenced by various reasons to experience stress and search on suicide on the Internet. Therefore, we need to develop diverse school-level programs that can help relieve teenagers of stress and workplace-level programs to get rid of the work-related stress of adults.
"소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.