• 제목/요약/키워드: social robots detection

검색결과 7건 처리시간 0.018초

Detecting Malicious Social Robots with Generative Adversarial Networks

  • Wu, Bin;Liu, Le;Dai, Zhengge;Wang, Xiujuan;Zheng, Kangfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5594-5615
    • /
    • 2019
  • Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.

음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템 (Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection)

  • 장동열;유승열
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.

A Study on Non-Contact Care Robot System through Deep Learning

  • Hyun-Sik Ham;Sae Jun Ko
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.33-40
    • /
    • 2023
  • 한국이 초고령사회로 진입하면서 노인 복지에 대한 필요성이 증가하고 있으나 현재 복지 인력 부족이 사회문제로 대두되고 있다. 이에 대한 해결책으로 노인의 사회적 고립감 완화와 위급 상황 시 비상 연락 등의 기능을 하는 노인 돌봄 로봇이 활발히 연구되고 있다. 하지만 이러한 기능들은 사용자의 접촉이 있어야만 작동하여 기존 노인 돌봄 로봇의 한계점으로 자리 잡고 있다. 본 논문에서는 기존의 문제를 해결하기 위해 상용화된 노인 돌봄 로봇과 카메라를 통해 직접적인 접촉 없이도 사용자와 상호작용할 수 있는 돌봄 로봇 시스템을 제안한다. 돌봄 로봇에 연결된 엣지 디바이스에 표정 인식 모델과 행동 인식 모델을 탑재하였고, 공공데이터를 통해 모델의 학습 및 성능검증을 진행했다. 실험 결과를 통해 표정 인식과 행동 인식의 성능이 각각 정확도 96.5%, 90.9%인 것을 확인할 수 있으며, 수행 시간의 경우에는 각각 50ms, 350ms인 것을 확인할 수 있다. 해당 결과는 제안한 시스템의 표정 및 행동 인식 정확도가 높고 추론 시간이 효율적임을 확인하며, 이는 비접촉 상황에서도 원활한 상호작용을 가능하게 한다.

로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법 (Recognition and Generation of Facial Expression for Human-Robot Interaction)

  • 정성욱;김도윤;정명진;김도형
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 - (Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing -)

  • 김성삼;이준우;구슬;김용민
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1749-1760
    • /
    • 2022
  • 현대 사회는 갈수록 대형화되는 자연재해와 잦은 재난사고에 의한 인적·사회적 피해가 해마다 증가하고 있다. 난접근 지역이거나 접근 불능의 위험한 재난 현장을 인공위성이나 드론, 조사로봇과 같은 첨단 조사장비를 활용하여 신속하게 접근하고 유의미한 재난 정보를 적시적으로 수집·분석함으로써, 사전 예방·대비 대책 마련뿐만 아니라 적절한 재난 현장 대응 및 중장기적 복구 계획 수립 등 재난관리 전주기에 걸쳐 국민의 재산과 생명을 지킬 수 있는 중차대한 역할을 수행할 수 있다. 본 특별호에서는 지구 원격 관측 수단인 인공위성 기술뿐만 아니라 근거리 재난현장 관측센서가 탑재된 이동형 조사차량, 드론, 조사로봇 등 다양한 조사 플랫폼을 활용한 연구원의 재난관리 현업화 기술을 소개하고 있다. 주요 연구 성과로 구글어스 엔진을 활용한 수재해 피해 탐지와 중·장기적 시계열 관측, Sentinel-1 Synthetic Aperture Radar (SAR) 영상과 인공지능을 활용한 저수지 수체 탐지, 산불 재난시 주민 이동 패턴 분석과 재난안전 연구 데이터의 효율적인 통합 관리와 활용방안 연구성과를 소개하였다. 아울러, 접근 불능의 위험한 재난현장 조사시 드론, 조사로봇을 활용한 재난원인 과학조사 연구성과를 기술하였다.

이산화염소 시스템을 적용한 자율주행 방역 로봇 (Self-driving quarantine robot with chlorine dioxide system)

  • 방걸원
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.145-150
    • /
    • 2021
  • 공공장소에서 지속적으로 방역을 수행하기 위해서는 인력확보가 쉽지 않은데 자율주행 기반 로봇을 활용하면 인력으로 인한 문제를 해결할 수 있다. 자율주행 기반 방역로봇은 별도의 인력 투입 없이 공공기관과 병원 등의 유해 바이러스 확산 및 질병을 지속적으로 예방 가능하다. 자율주행 기능은 피나클 필터 알고리즘을 적용하여 위치를 추정하고, 방역은 UV살균시스템 및 이산화염소 분사시스템을 적용하였다. 주행시간은 3시간 이상, 위치 오차는 0.5m.이내, 정지 회피하는 기능은 95%, 장애물 감지 거리는 1.5m에서 동작하였다, 자동충전 복구는 배터리 잔량 10%에서 충전거치대로 이동하여 충전이 되었다. 무인방역시스템으로 방역한 결과 인력배치 없이 UV살균은 99%, 이산화염소는 95% 이상 살균되어 막대한 사회적 비용을 절감하는데 자율주행 방역로봇이 기여할 수 있다.

BERTopic을 활용한 인간-로봇 상호작용 동향 연구 (A Study on Human-Robot Interaction Trends Using BERTopic)

  • 김정훈;곽기영
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.185-209
    • /
    • 2023
  • 4차 산업혁명의 도래와 함께 다양한 기술이 주목을 받고 있다. 4차 산업혁명과 관련된 기술로는 IoT(Internet of Things), 빅데이터, 인공지능, VR(Virtual Reality), 3D 프린터, 로봇공학 등이 있으며 이러한 기술은 종종 융합된다. 특히 로봇 분야는 빅데이터, 인공지능, VR, 디지털 트윈과 같은 기술과 결합할 것으로 기대된다. 이에 따라 로봇을 활용한 연구가 다수 진행되고 있으며 유통, 공항, 호텔, 레스토랑, 교통 분야 등에 적용되고 있다. 이러한 상황에서 인간-로봇 상호작용에 대한 연구가 주목을 받고 있지만 아직 만족할 만한 수준에는 이르지 못하고 있다. 하지만 완벽한 의사소통이 가능한 로봇에 대한 연구가 꾸준히 이루어지고 있고 이는 인간의 감정노동을 대신할 수 있을 것으로 기대된다. 따라서 현재의 인간-로봇 상호작용 기술을 비즈니스에 적용할 수 있는지에 대한 논의가 필요하다. 이를 위해 본 연구는 첫째, 인간로봇 상호작용 기술의 동향을 살펴본다. 둘째, LDA(Latent Dirichlet Allocation) 토픽모델링과 BERTopic 토픽모델링 방법을 비교한다. 연구 결과, 1992년~2002년 간의 연구에서는 인간-로봇 상호작용에 대한 개념과 기초적인 상호작용에 대해 논의되고 있었다. 2003년~2012년에는 사회적 표현에 대한 연구가 많이 진행되었으며 얼굴검출, 인식 등과 같이 판단과 관련된 연구도 수행되었다. 2013년~2022년에는 노인 간호, 교육, 자폐 치료와 같은 서비스 토픽들이 등장하였으며, 사회적 표현에 대한 연구가 지속되었다. 그러나 아직까지 비즈니스에 적용할 수 있는 수준에는 이르지 못한 것으로 보인다. 그리고 LDA토픽모델링과 BERTopic 토픽모델링 방법을 비교한 결과 LDA에 비해 BERTopic이 더 우수한 방법임을 확인하였다.