• Title/Summary/Keyword: social big data analysis

Search Result 731, Processing Time 1.636 seconds

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

Utilization and Analysis of Big-data

  • Lee, Soowook;Han, Manyong
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.255-259
    • /
    • 2019
  • This study reviews the analysis and characteristics of databases from big data and then establishes representational strategy. Thus, analysis has continued for a long time in the quantity and quality of data, and there are changes in the location of data in the social sciences, past trends and the emergence of big data. The introduction of big data is presented as a prototype of new social science and is a useful practical example that empirically shows the need, basis, and direction of analysis through trend prediction services. Big data provides a future perspective as an important foundation for social change within the framework of basic social sciences.

A Trend Analysis of Floral Products and Services Using Big Data of Social Networking Services

  • Park, Sin Young;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.5
    • /
    • pp.455-466
    • /
    • 2019
  • This study was carried out to analyze trends in floral products and services through the big data analysis of various social networking services (SNSs) and then to provide objective marketing directions for the floricultural industry. To analyze the big data of SNSs, we used four analytical methods: Cotton Trend (Social Matrix), Naver Big Data Lab, Instagram Big Data Analysis, and YouTube Big Data Analysis. The results of the big data analysis showed that SNS users paid positive attention to flower one-day classes that can satisfy their needs for direct experiences. Consumers of floral products and services had their favorite designs in mind and purchased floral products very actively. The demand for flower items such as bouquets, wreaths, flower baskets, large bouquets, orchids, flower boxes, wedding bouquets, and potted plants was very high, and cut flowers such as roses, tulips, and freesia were most popular as of June 1, 2019. By gender of consumers, females (68%) purchased more flower products through SNSs than males (32%). Consumers preferred mobile devices (90%) for online access compared to personal computers (PCs; 10%) and frequently searched flower-related words from February to May for the past three years from 2016 to 2018. In the aspect of design, they preferred natural style to formal style. In conclusion, future marketing activities in the floricultural industry need to be focused on social networks based on the results of big data analysis of popular SNSs. Florists need to provide consumers with the floricultural products and services that meet the trends and to blend them with their own sensitivity. It is also needed to select SNS media suitable for each gender and age group and to apply effective marketing methods to each target.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

Correspondence Strategy for Big Data's New Customer Value and Creation of Business (빅 데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략)

  • Koh, Joon-Cheol;Lee, Hae-Uk;Jeong, Jee-Youn;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.229-238
    • /
    • 2012
  • Within last 10 years, internet has become a daily activity, and humankind had to face the Data Deluge, a dramatic increase of digital data (Economist 2012). Due to exponential increase in amount of digital data, large scale data has become a big issue and hence the term 'big data' appeared. There is no official agreement in quantitative and detailed definition of the 'big data', but the meaning is expanding to its value and efficacy. Big data not only has the standardized personal information (internal) like customer information, but also has complex data of external, atypical, social, and real time data. Big data's technology has the concept that covers wide range technology, including 'data achievement, save/manage, analysis, and application'. To define the connected technology of 'big data', there are Big Table, Cassandra, Hadoop, MapReduce, Hbase, and NoSQL, and for the sub-techniques, Text Mining, Opinion Mining, Social Network Analysis, Cluster Analysis are gaining attention. The three features that 'bid data' needs to have is about creating large amounts of individual elements (high-resolution) to variety of high-frequency data. Big data has three defining features of volume, variety, and velocity, which is called the '3V'. There is increase in complexity as the 4th feature, and as all 4features are satisfied, it becomes more suitable to a 'big data'. In this study, we have looked at various reasons why companies need to impose 'big data', ways of application, and advanced cases of domestic and foreign applications. To correspond effectively to 'big data' revolution, paradigm shift in areas of data production, distribution, and consumption is needed, and insight of unfolding and preparing future business by considering the unpredictable market of technology, industry environment, and flow of social demand is desperately needed.

Big Data Analytics for Social Responsibility of ESG: The Perspective of the Transport for Person with Disabilities (ESG 사회적책임 제고를 위한 빅데이터 분석: 장애인 콜택시 운영 효율성 관점)

  • Seo, Chang Gab;Kim, Jong Ki;Jung, Dae Hyun
    • The Journal of Information Systems
    • /
    • v.32 no.2
    • /
    • pp.137-152
    • /
    • 2023
  • Purpose The purpose of this study is to analyze big data related to DURIBAL from the operation of taxis reserved for the disabled to identify the issues and suggest solutions. ESG management should be translated into "environmental factors, social responsibilities, and transparent management." Therefore, the current study used Big Data analysis to analyze the factors affecting the standby of taxis reserved for the disabled and relevant problems for implications on convenience of social weak. Design/methodology/approach The analysis method used R, Excel, Power BI, QGIS, and SPSS. We proposed several suggestions included problems with managing cancellation data, minimization of dark data, needs to develop an integrated database for scattered data, and system upgrades for additional analysis. Findings The results showed that the total duration of standby was 34 minutes 29 seconds. The reasons for cancellation data were mostly use of other modes of transportation or delayed arrival. The study suggests development of an integrated database for scattered data. Finally, follow-up studies may discuss government-initiated big data analysis to comparatively analyze the use of taxis reserved for the disabled nationwide for new social value.

Analysis of Social Welfare Effects of Onion Observation Using Big Data (빅데이터를 활용한 양파 관측의 사회적 후생효과 분석)

  • Joo, Jae-Chang;Moon, Ji-Hye
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.3
    • /
    • pp.317-332
    • /
    • 2021
  • This study estimated the predictive onion yield through Stepwise regression of big data and weather variables by onion growing season. The economic feasibility of onion observations using big data was analyzed using estimated predictive data. The social welfare effect was estimated through the model of Harberger's triangle using onion yield prediction with big data and it without big data. Predicted yield using big data showed a deviation of -9.0% to 4.2%. As a result of estimating the social welfare effect, the average annual value was 23.3 billion won. The average annual value of social welfare effects if big data was not used was measured at 22.4 billion won. Therefore, it was estimated that the difference between the social welfare effect when the prediction using big data was used and when it was not was about 950 million won. When these results are applied to items other than onion items, the effect will be greater. It is judged that it can be used as basic data to prove the justification of the agricultural observation project. However, since the simple Harberger's triangle theory has the limitation of oversimplifying reality, it is necessary to evaluate the economic value through various methods such as measuring the effect of agricultural observation under a more realistic rational expectation hypothesis in future studies.

An Analysis of the Hocance Phenomenon using Social Media Big Data (소셜 미디어 빅데이터를 활용한 호캉스(hocance) 현상 분석)

  • Choi, Hong-Yeol;Park, Eun-Kyung;Nam, Jang-Hyeon
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.2
    • /
    • pp.161-174
    • /
    • 2021
  • Purpose - The purpose of this study was to examine the recent popular consumption trend, the hocance phenomenon, using social media big data. The study intended to present practical directions and marketing measures for the recovery and growth of the hotel industry after COVID-19 pandemic. Design/methodology/approach - Big data analysis has been used in various fields, and in this study, it was used to understand the hocance phenomenon. For three years from January 1, 2018 to December 31, 2020, we collected text data including the keyword 'hocance' from the blog and cafe of NAVER and Daum. TEXTOM and UCINET 6 were used to collect and analyze the data. Findings - According to the results of analysis, the words such as 'hocance', 'hotel', 'Seoul', 'travel', 'swimming pool', 'Incheon', 'breakfast', 'child' and 'friend' were identified with high frequency. The results of CONCOR analysis showed similar results in all three years. It has been confirmed that 'swimming pool', 'breakfast', 'child' and 'friend' are important when deciding on the hocance package. Research implications or Originality - The study was differentiated in that it used social media big data instead of traditional research methods. Furthermore, it reflected social phenomena as a consumption trend so there was practical value in establishing marketing strategies for the tourism and hotel industry.

A Study on the Analysis Method of ICT Policy Triggering Mechanism Using Social Big Data (소셜 빅데이터 특성을 활용한 ICT 정책 격발 메커니즘 분석방법 제안)

  • Choi, Hong Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1192-1201
    • /
    • 2021
  • This study focused on how to analyze the ICT policy formation process using social big data. Specifically, in this study, a method for quantifying variables that influenced policy formation using the concept of a policy triggering mechanism and elements necessary to present the analysis results were proposed. For the analysis of the ICT policy triggering mechanism, variables such as 'Scope', 'Duration', 'Interactivity', 'Diversity', 'Attention', 'Preference', 'Transmutability' were proposed. In addition, 'interpretation of results according to data level', 'presentation of differences between collection and analysis time points', and 'setting of garbage level' were suggested as elements necessary to present the analysis results.

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF