• Title/Summary/Keyword: snowmelt model

Search Result 26, Processing Time 0.025 seconds

Influence of Snow Accumulation and Snowmelt Using NWS-PC Model in Rainfall-runoff Simulation (NWS-PC 모형을 이용한 강우-유출 모의에서 적설 및 융설 영향)

  • Kang, Shin Uk;Rieu, Seung Yup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.1-9
    • /
    • 2008
  • The impact of snow accumulation and snowmelt in rainfall-runoff modelling was analyzed for the Soyanggang dam basin by comparing the measured and simulated discharges simulated by the NWS-PC model. Sugawara's conceptual model was used to simulate the snow accumulation and snowmelt phenomena and NWS-PC model was employed to simulate rainfall-runoff. Parameters in model calibration were estimated by the Multi-step Automated Calibration Scheme and optimized using SCE-UA algorithm in each step. The results of the model calibration and verification show that the model considering snowmelt process is better than the one without consideration of snowmelt under the performance criteria such as RMSE, PBIAS, NSE, and PME. The measured discharge time series has over 60 days of persistence. Correlograms for each simulation showed that the simulated discharge with snowmelt model reproduce the persistence closely to the measured discharge's while the one without snow accumulation and snowmelt model reproduce only 20 days of persistence. The study result indicates that the inclusion of snow accumulation and snowmelt model is important for the accurate simulation of rainfall-runoff phenomena in the Soyanggang dam basin.

Development of Mathematical Model for Both Solute Transport in Snow and Isotopic Evolution of Snowmelt (눈 속에서의 용질이동 및 융설의 동위원소변동에 관한 모델개발)

  • Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.31-39
    • /
    • 2012
  • Chemical and isotopic variations of snowmelt provide important clues for understanding snowmelt processes and the timing and contribution of snowmelt to catchment or watershed in spring. The newly developed model includes a hydraulic exchange between mobile and immobile water (${\omega}$), and isotopic exchanges between both mobile water and ice ($f_1$) and immobile water and ice ($f_2$). Since the new model is based on the mobile-immobile water conceptualization, which is widely used for describing chemical tracer transport in snow, it allows simultaneous calculations of chemical as well as isotopic variations in snowpack discharge. We compare the model results with a study of solute transport and isotopic evolution of snowmelt in snow, using artificial rain-on-snow experiments with conservative anion ($Br^-$). These observations are used to test the newly developed model and to better understand physical processes in a seasonal snowpack where our model simulates the chemical and isotopic variations.

A Fundamental Study on the Snowmelt Effects for Long-Term Runoff Analysis (장기 유출해석에서의 융설영향에 관한 기초 연구)

  • Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.833-844
    • /
    • 1998
  • The objectives of this study are to adopt a snowmelt model for coupling a rainfall-runoff model and to study snowmelt effects for long-term runoff analysis on the northeast mountaneous area in Korea. The NWS temperature-index snowmelt model was selected and tested on the 1,059+,6 km$^2$ Naerinchen basin. It can be observed that the time variations of the computed areal extents of snow cover from the model are well agreement with those of the observe station snowfall records on the Inje meteorological station. It is also evident that the computed soil water contents and river flows indicate quite different behaviors with or without snowmelt model. It is concluded that the snowmelt model works well and the snowmelt effects for multi-decadal river flow computations are important on the study area.

  • PDF

Assessment of Climate Change Impacts on Hydrology and Snowmelt by Applying RCP Scenarios using SWAT Model for Hanriver Watersheds (SWAT 모델링을 이용한 한강유역의 RCP 시나리오에 따른 미래수문 및 융설 영향평가)

  • Jung, Chung Gil;Moon, Jang Won;Jang, Cheol Hee;Lee, Dong Ryul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.37-48
    • /
    • 2013
  • The objective of this study is to assess the impact of potential climate change on the hydrological components, especially on the streamflow, evapotranspiration and snowmelt, by using the Soil Water Assessment Tool (SWAT) for 17 Hanriver middle watersheds of South Korea. For future assessment, the SWAT model was calibrated in multiple sites using 4 years (2006-2009) and validated by using 2 years (2010-2011) daily observed data. For the model validation, the Nash-Sutcliffe model efficiency (NSE) for streamflow were 0.30-0.75. By applying the future scenarios predicted five future time periods Baseline (1992-2011), 2040s (2021-2040), 2060s (2041-2060), 2080s (2061-2080) and 2100s (2081-2100) to SWAT model, the 17 middle watersheds hydrological components of evapotranspiration, streamflow and snowmelt were evaluated. For the future precipitation and temperature of RCP 4.5 scenario increased 41.7 mm (2100s), $+3^{\circ}C$ conditions, the future streamflow showed +32.5 % (2040s), +24.8 % (2060s), +50.5 % (2080s) and +55.0 % (2100s). For the precipitation and temperature of RCP 8.5 scenario increased 63.9 mm (2100s), $+5.8^{\circ}C$ conditions, the future streamflow showed +35.5 % (2040s), +68.9 % (2060s), +58.0 % (2080s) and +63.6 % (2100s). To determine the impact on snowmelt for Hanriver middle watersheds, snowmelt parameters of SWAT model were determined through evaluating observed streamflow data during snowmelt periods (November-April). The results showed that average SMR (snowmelt / runoff) of 17 Hanriver middle watersheds was 62.0 % (Baseline). The annual average SMR were 42.0 % (2040s), 39.8 % (2060s), 29.4 % (2080s) and 27.9 % (2100s) by applying RCP 4.5 scenario. Also, the annual average SMR by applying RCP 8.5 scenario were 40.1 % (2040s), 29.4 % (2060s), 18.3 % (2080s) and 12.7 % (2100s).

An Evaluation of Snowmelt Effects Using SWAT in Chungju Dam Basin (SWAT을 활용한 충주댐 유역의 융설 영향 평가)

  • Kim, Nam-Won;Lee, Byong-Ju;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.833-844
    • /
    • 2006
  • The objective of this study is to evaluate the snowmelt effects on the hydrological components, especially on the runoff, by using the soil water assessment tool(SWAT) which is a continuous semi-distributed long term rainfall-runoff model. The model was applied to the basin located in the upstream of the Chungju Dam. Some parameters in the snowmelt algorithm were estimated for the Chungju basin in order to reflect the snowmelt effects. The snowmelt effects were assessed by comparing the simulated runoff with the observed runoff data at the outlet of the basin. It was found out that the simulated runoff with considering the snowmelt component matches more satisfactorily to the observed one than without considering snowmelt effect. The simulation results revealed that the snowmelt effects were noticeable on March and April. Similar results were obtained at other two upstream gauging points. The effect of the elevation bands which distribute temperature and precipitation with elevation was analyzed. This study also showed that the snowmelt effect significantly affects the temporal distribution as well as quantity of the hydrological components. The simulated runoff was very sensitive to the change of temperature near the threshold temperature which the snowmelt can occur. However, the reason was not accounted for this paper, Therefore, further analyses related to this feature are needed.

An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation (스노우팩-융설 계산을 위한 에너지수지 알고리즘)

  • Lee, Jeong-Hoon;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

Assessment of Snowmelt Impact on Chungju Dam Watershed Inflow Using Terra MODIS Data and SWAT Model (Terra MODIS 위성영상과 SWAT 모형을 이용한 융설이 충주댐 유입량에 미치는 영향 평가)

  • Kim, Saet Byul;Ahn, So Ra;Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.457-467
    • /
    • 2014
  • This study is to evaluate the snowmelt impact on dam inflow for the Chungju Dam watershed $6,642.0km^2$ using Terra MODIS (Moderate-Resolution Imaging Spectroradiometer) and Soil and Water Assessment Tool (SWAT). To determine the SWAT snowmelt parameter; snow cover depletion curve (SCDC) the snow depth distribution (SDD) using Terra MODIS was used, the snow depth was spatially interpolated using snowfall data of ground meteorological stations. For 10 sets (2000-2010) data during snowmelt period (November-April), the sno50cov parameter, that is, the 50% coverage at a fraction of SCDC which determines the shape of snow depletion process, showed the values of 0.4 to 0.7. The SWAT model was calibrated with average $R^2$ of 0.54 using the sno50cov of each year. The 10 years average streamflow during snowmelt period was 104.3 mm which covers 12.0% of the annual streamflow.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Validations of a Numerical Model of Solute Transport in a Snowpack (눈 속에서 용질이동을 모사하기 위한 수치모델의 검증)

  • Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.525-533
    • /
    • 2012
  • Snowmelt from seasonal snow covers can be significant in many environments of northern and alpine areas. Water flow and chemical transport resulting from snowmelt have been studied for an understanding of contributions to watersheds or catchments. A Mobile-Immobile water Model (MIM) was developed to describe the movement of ionic tracers through a snowpack by Lee et al. (2008a) and Lee et al. (2008b). To validate the model used in the studies, mass balance calculations of the model were conducted and comparisons were made between model results and analytical solutions in this work. Mass balance was calculated based on the fact that change in total mass within a snowpack with time is equal to sum of any change in the flux of water or ionic tracers into and out of the snowpack. Calculations of both water and ionic mass show almost perfect agreement between changes of two water and solute mass fluxes. Comparisons between model results and analytical solutions including wave velocity and effective saturation show almost perfect agreement.

Application of Snowmelt Parameters and the Impact Assessment in the SLURP Semi-Distributed Hydrological Model (준 분포형 수문모형 SLURP에서 융설매개변수 적용 및 영향 평가)

  • Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.617-628
    • /
    • 2007
  • The purpose of this paper is to prepare snowmelt parameters using RS and GIS and to assess the snowmelt impact in SLURP (Semi-distributed Land Use-based Runoff Process) model for Chungju-Dam watershed $(6,661.5km^2)$. Three sets of NOAA AVHRR images (1998-1999, 2000-2001, 2001-2002) were analyzed to prepare snow-related data of the model during winter period. Snow cover areas were extracted using 1, 3 and 4 channels, and the snow depth was spatially interpolated using snowfall data of ground meteorological stations. With the snowmelt parameters, DEM (Digital Elevation Model), land cover, NDVI (Normalized Difference Vegetation Index) and weather data, the model was calibrated for 3 years (1998, 2000, 2001), and verified for 1 year (1999) using the calibrated parameters. The average Nash-Sutcliffe efficiencies for 4 years (1998-2001) discharge comparison with and without snowmelt parameters were 0.76 and 0.73 for the full period, and 0.57 and 0.19 for the period of January to May. The results showed that the spatially prepared snow-related data reduced the calibration effort and enhanced the model results.