• Title/Summary/Keyword: smoother

Search Result 463, Processing Time 0.02 seconds

A performance improvement method in the gun fire control system compensating for measurement bias error of the target tracking sensor (표적추적센서의 측정 바이어스 오차 보상에 의한 사격통제장치 성능 향상 기법)

  • Kim, Jae-Hun;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.121-130
    • /
    • 2000
  • A practical method is proposed to improve hit probability of the digital gun fire control system, when the measured rate of the tracking sensor becomes biased under some operational situation. For ground moving target it is shown that the well-known Kalman filter which uses position measurement only can be optimally used to eliminate the rate bias error. On the other hand, for 3D moving aircraft we present a new algorithm which incorporate FIR-type filter, which uses position and rate measurement at the same time, and the fixed-lag smoother using position measurement only, and show that it has the optimal performance in terms of both estimation accuracy and response time.

  • PDF

Combination of Preconditioned Krylov Subspace Methods and Multi-grid Method for Convergence Acceleration of the incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식의 수렴 가속을 위한 예조건화 Krylov 부공간법과 다중 격자법의 결합)

  • Maeng Joo Sung;Choi IL Kon;Lim Youn Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.106-112
    • /
    • 1999
  • In this article, combination of the FAS-FMG multi-grid method and the Krylov subspace method was presented in solving two dimensional driven-cavity flows. Three algorithms of the Krylov subspace method, CG, CGSTAB(Bi-CG Stabilized) and GMRES method were tested with MILU preconditioner. As a smoother of the pressure correction equation, the MILU-CG is recommended rather than MILU-GMRES(k) or MILU-CGSTAB, since the MILU-GMRES(k) preconditioner has too much computation on the coarse grid compared to the MILU-CG one. As for the momentum equation, relatively cheap smoother like SIP solver may be sufficient.

  • PDF

On Convex Combination of Local Constant Regression

  • Mun, Jung-Won;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.379-387
    • /
    • 2006
  • Local polynomial regression is widely used because of good properties such as such as the adaptation to various types of designs, the absence of boundary effects and minimax efficiency Choi and Hall (1998) proposed an estimator of regression function using a convex combination idea. They showed that a convex combination of three local linear estimators produces an estimator which has the same order of bias as a local cubic smoother. In this paper we suggest another estimator of regression function based on a convex combination of five local constant estimates. It turned out that this estimator has the same order of bias as a local cubic smoother.

Implementation of a Real-time SIFT Pitch Detector (실시간 SIFT 기본주파수 검출기의 구현)

  • Lee, Jong Seok;Lee, Sang Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 1986
  • In this paper, a real-time pitch detector LPC vocoder as implemented on a high speed digital signal processor, NEC 7720, is described. The pitch detector was based mainly on the SIFT algorithm. The SIFT pitch detector consists primarily of a digital low pass filter, inverse filter, computation of autocorrelation, a peak picker, interpolation, V/UV defcision and a final pitch smoother. In our approach, modification, mainly on the V/UV decision and a final pitch smoother, was made to estimate more accurate pitches. An 16-bit fixed-point aithmatic was employed for all necessary computation and the simulated results were compared with the eye detected pitches obtained from real speech data. The pitch detector occupies 98.8% of the instruction ROM, 37% of the data ROM, and 94% of internal RAM and takes 15.2ms to estimate a pitch when an analysis frame is consisted of 128 sampled speech data. It is observed that the tested results were well agreed with the computer simulation results.

  • PDF

An Analysis of Factors Affecting the Variation of GDP Gap by a Decomposition Method (GDP갭 분해기법을 이용한 변동요인 분석)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.387-396
    • /
    • 2014
  • The GDP gap (also called the output gap) is the difference between potential GDP and actual GDP. Potential GDP is the maximum sustainable output that is achieved when the resources (labor and capital) are used to capacity. Central banks pursuing price and employment stability consider the output gap as an informative variable for monetary policy since the output gap could be regarded as a proxy of demand-supply imbalances. In this paper, the GDP gap of Korea is decomposed following the filtering method in the previous research, and major factors that affect the variation of GDP gap are investigated based on the decomposed series. The analysis results by the Super Smoother algorithm used in Fox et al. (2003)and Fox and Zurlinden (2006) are found consistent with theory. Much of the variation of nominal GDP gap is explained by Total Factor Productivity(TFP) gap, which is the change of productivity due to recent technological innovation and environmental change. It is also found that variation of terms of trade significantly affects the GDP gap of Korea due to its high dependency on international trade; however, the effect of the domestic price is not negligible like other countries.

Analysis of Neck Fit-zone according to Body Type for Females in Their 60s (60대 여성 체형별 목 부위 피트존 분석)

  • Park, Sunhee;Hong, Kyunghi;Lee, Yejin
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.429-438
    • /
    • 2018
  • This study analyzed the fit-zone of the neck for females in their 60s. We considered the standard body types of females in their 60s and the four body types from the sixth Size Korea. The results of the study were as follows. We could not determine a pattern formula for the neck based on the changes in the body type of females in their 60s. However, the position of the lateral neck point generally showed a significant difference from that of females in their 20s. In the case of the shoulder angle, the point of the shoulder was angled slightly towards the back in all body types. It was also found that the curve of the neck circumference for both the collar and the bodice should have been smoother than what was shown on the 3D shape. The larger the height difference between the point of the back of the neck and the lateral neck point in the 3D shape, the smoother the design should be at the curve of the circumference at the front of the neck. A larger curvature in the front radius of the 3D shape increased the difference in the shape of the curve between the collar and the basic pattern of the bodice. Hence, a more careful design is required for these parts of the pattern. In addition, the more the front neck is bent, the smoother the circumference curve should be in the pattern design at the front of the neck and the collar.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

Extraction of tire information markings using a surface reflection model (표면의 반사 특성을 이용한 타이어 정보 마크의 추출)

  • Ha, Jong-Eun;Lee, Jae-Yong;Gwon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.324-329
    • /
    • 1996
  • In this paper, we present a vision algorithm to extract the tire information markings on the sidewall of tires. Since the appearance of tire marks is the same as its background, a primary feature to distinguish tire marks from their background is the roughness. Generally, the roughness of tire marks is different from that of its bakground: the surface of tire marks is smoother than the backgrounds. Light incident on the tire surface is reflected differently according to the roughness. For smoother surfaces, the surface irradiance is much stronger than that of rough surfaces. Based on these phenomena and observation, we propose an optimal illumination condition based on Torrance-Sparrow reflection model. We also develop an efficient reflectance-ratio based operator to extract the boundary of tire marks. Even with a very simple masking operation, we were able to obtain remarkable boundary extraction results from real experiments using many tires. By explicitly using the surface reflection model to explain the intensity variation on the black tire surface, we demonstrate that a physics-based vision method is powerful and feasible in extracting surface markings on tires.

  • PDF

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.