• Title/Summary/Keyword: smooth

Search Result 6,576, Processing Time 0.037 seconds

WEAK* SMOOTH COMPACTNESS IN SMOOTH TOPOLOGICAL SPACES

  • Park, Chun-Kee;Min, Won Keun;Kim, Myeong Hwan
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • In this paper we obtain some properties of the weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set in smooth topological spaces and introduce the concepts of several types of $weak^*$ smooth compactness in smooth topological spaces and investigate some of their properties.

  • PDF

QUASI-SMOOTH α-STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

  • Min, Won Keun;Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.223-234
    • /
    • 2005
  • We introduce the concepts of weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set and obtain some of their structural properties. We also introduce the concepts of several types of quasi-smooth ${\alpha}$- compactness in terms of the concepts of weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set and investigate some of their properties.

  • PDF

WEAK QUASI-SMOOTH α-COMPACTNESS IN SMOOTH TOPOLOGICAL SPACES

  • Min, Won Keun;Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.101-112
    • /
    • 2006
  • In this paper, we introduce the concepts of weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set and obtain some of their structural properties. We also introduce the concepts of several types of weak quasi-smooth ${\alpha}$-compactness in terms of the concepts of weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set and investigate some of their properties.

  • PDF

WEAK* QUASI-SMOOTH α-STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

  • Min, Won Keun;Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.233-240
    • /
    • 2006
  • In this paper we introduce the concepts of several types of $weak^*$ quasi-smooth ${\alpha}$-compactness in terms of the concepts of weak smooth ${\alpha}$-closure and weak smooth ${\alpha}$-interior of a fuzzy set in smooth topological spaces and investigate some of their properties.

  • PDF

SMOOTH FUZZY CLOSURE AND TOPOLOGICAL SPACES

  • Kim, Yong Chan
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.11-25
    • /
    • 1999
  • We will define a smooth fuzzy closure space and a subspace of it. We will investigate relationships between smooth fuzzy closure spaces and smooth fuzzy topological spaces. In particular, we will show that a subspace of a smooth fuzzy topological space can be obtained by the subspace of the smooth fuzzy closure space induced by it.

  • PDF

Smooth uniform spaces

  • Ramadan, A.A.;El-Dardery, M.;Kim, Y.C.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • We study some properties of smooth uniform spaces. We investigate the relationship between smooth topological spaces and smooth uniform spaces. In particular, we define a subspace of a smooth uniform space and a product of smooth uniform spaces.

Closure, Interior and Compactness in Ordinary Smooth Topological Spaces

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2014
  • It presents the concepts of ordinary smooth interior and ordinary smooth closure of an ordinary subset and their structural properties. It also introduces the notion of ordinary smooth (open) preserving mapping and addresses some their properties. In addition, it develops the notions of ordinary smooth compactness, ordinary smooth almost compactness, and ordinary near compactness and discusses them in the general framework of ordinary smooth topological spaces.

Some Topological Structures of Ordinary Smooth Topological Spaces

  • Lee, Jeong Gon;Lim, Pyung Ki;Hur, Kul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.799-805
    • /
    • 2012
  • We introduce the notions of ordinary smooth, quasi-ordinary smooth and weak ordinary smooth structure, showing that various properties of an ordinary smooth topological space can be expressed in terms of these structures. In particular, the definitions and results of [2, 4, 5] may be expressed in terms of the ordinary smooth and quasi-ordinary smooth structures. Furthermore, we present the basic concepts relating to the weak ordinary smooth structure of an ordinary smooth topological space and the fundamental properties of the objects in these structures.

WEAK SMOOTH α-STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

  • Park, Chun-Kee;Min, Won-Keun;Kim, Myeong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.143-153
    • /
    • 2004
  • In [3] and [6] the concepts of smooth closure, smooth interior, smooth ${\alpha}-closure$ and smooth ${\alpha}-interior$ of a fuzzy set were introduced and some of their properties were obtained. In this paper, we introduce the concepts of several types of weak smooth compactness and weak smooth ${\alpha}-compactness$ in terms of these concepts introduced in [3] and [61 and investigate some of their properties.

Ordinary Smooth Topological Spaces

  • Lim, Pyung-Ki;Ryoo, Byeong-Guk;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.66-76
    • /
    • 2012
  • In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.