• Title/Summary/Keyword: smectite synthesis

Search Result 7, Processing Time 0.023 seconds

Low-temperature Hydrothermal Synthesis of Organic Smectite from Siliceous Mudstone (규질 이암으로부터 유기 스멕타이트의 저온 수열합성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • Organic smectite was hydrothermally synthesized by treating the opal-rich siliceous mudstone from the Pohang area with TMAOH solutions and 1:1 solutions of TMAOH+NaOH at $80^{\circ}C$ and concentrations ranging 10∼15%. Smectite was solely formed without accompanying any mineral products in case of TMAOH, whereas NaP and hydroxysodalite was synthesized together with smectite under the blending solution of TMAOH+NaOH. The synthesized smectite is identified as an organic smectite intercalating $TMA^{+}$ within its interlayer site, specifically corresponding to monmorillonite species, through mineralogical characterization by XRD, DTA, and IR analyses. The experimental results indicate that main precursor of the synthesized smectite is undoubtedly opal-CT, and the original sedimentary smectite included as considerable amounts in the mudstone seems to play a major role as Al-sources necessary far the smectite formation. Original inert components such as quartz and mica do not affect mostly to the synthesis reaction, and thus, are resultantly found as impurities in the synthetic products. These experimental results may imply that a new effective method for the low-temperature (less than $100^{\circ}C$) hydrothermal synthesis of organic smectite will be established if some Al-sources adequate for this synthetic system are available.

Hydrothermal Synthesis of Smectite from Zeolite (제올라이트로부터 스멕타이트 수열 합성에 대한 연구)

  • Chae, Soo-Chun;Kim, You-Dong;Jang, Young-Nam;Bae, In-Kook;Ryu, Kyung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.301-310
    • /
    • 2006
  • Smectites were synthesized from Na-P type and Na-A type zeolites by the hydrothermal synthetic method, and their physicochemical properties were studied. The optimal synthetic conditions for producing smectite were $290^{\circ}C$, 72 hr and $75{\sim}100kgf/cm^2$ in autogenous pressure. pHs of initial reaction solutions for the synthesis of smectites from Na-P type and Na-A type zeolite s were pH 6 and pH 10, respectively. The synthetic smectite was confirmed as $12{\AA}$-beidellite by a series of analysis such as X-ray diffraction analysis with random and oriented mounts, ethylene glycol treatment, and Greene-Kelly test, and their several physicochemical properties were studied.

Hydrothermal Synthesis of Smectite from Dickite (딕카이트로부터 스멕라이트의 수열합성)

  • Ryu Gyoung-Won;Jang Young-Nam;Bae In-Kook;Chae Soo-Chun;Choi Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.267-275
    • /
    • 2004
  • A hydrothermal process was used to synthesize dioctahedral smectite from dickite [$A1_2$$Si_2$$O_{5}$ $(OH)_4$], Dickite was previously activated by heating at $800^{\circ}C$ far 4 hours with $Na_2$$CO_3$. After the heat-treatment, $SiO_2$ was added for stoichiometry, The autoclaving was carried out in closed stainless steel vessel (about 1 liter) at the condition of various temperature, pressure, time etc. High quality smectite could be obtaind by heating at $290^{\circ}C$ under the pressure of 60 kgf/$\textrm{cm}^2$ for 48 hours. This experiment reveals that pH of the solution was an important factor and should be maintained at 10 to 11 for the formation of dioctahedral smectite. The synthesized smectite was identified as Na-beidellite by the treatment of ethylene glycol and Greene-Kelly test.

Hydrothermal Synthetic Study of Zeolites from Siliceous Mudstone (규질 이암으로부터 제올라이트의 수열 합성에 관한 연구)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.171-185
    • /
    • 2000
  • Siliceous mudstones are embedded on a large scale in the Tertiary formations of Pohang area. Some useful zeolites such as NsP, (Na, TMA)P, analcime and hydroxysodalite were synthesized from the siliceous mudstones by treating with the variety of solution, i.e ., NaOH, NaOH+NaCl, NaOH, NaOH+$NaAlO_2$and NaOH+TMAOH at the low-temperature hydrothermal system ranging 60~12$0^{\circ}C$. Major precursor of zeolites is found as opal-CT in the zeolite-forming reaction. Smectite, which is included in considerable amounts in the mudstone, appears to play a major role of Al-source in the zeolite synthesis. In comparison, chalcedonic quartz and mica are rather insoluble in alkaline solution, and thus, these are observed as major impurities in the reaction products. An addition of $NaAlO_2$to NaOH solution is effective for eliminating these impurities in the reaction procedure, through these are partly dissolved when elevating the reaction temperature, concentration, and time. Phase change from NaP to hydroxysodalite takes place at the NaOH concentrations of 3.0~4.0 M, and the reaction is not sensitive to the temperature shift. NaP is more stable at lower NaOH concentration and higher activity of $Na_{+}$ whereas analcime is sensitive to the temperature change and stable at higher than $100^{\circ}C$ and 2.0~4.0 M in NaOH concentration. For the pure NaP synthesis without any other products, the treatment of mudstones with 1:1 solution of NaOH and $NaAlO _2$ turns out to be quite effective. NaP was successfully synthesized together with analcime at $100^{\circ}C$ as well as lower concentrations of NaOH+NaCl solution. In addition, the organic type, (Na, TMA)P was formed together with smectite in the 1:1 solution of NaOH and TMAOH.

  • PDF

Hydrothermal Synthesis of Saponite from Talc (활석을 이용한 사포나이트의 수열합성)

  • 배인국;장영남;채수천;류경원;최상훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2003
  • Saponite was synthesized from talc by hydrothermal method. The starting material was prepared by adding ($NO_3$)$Al_3$$.$$9H_2$O and Mg($NO_3$)$_2$$.$$6H_2$O solution to the talc powder. which was previously activated in air at 800 $^{\circ}C$ together with $Na_2$$CO_3$. The alkalinity of the solution was controlled by $NH_4$OH solution. The autoclaving was carried out in the closed stainless steel vessel (about 1 liter) for 40 hours under the pressure of 25 kgf/$\textrm{cm}^2$ at $ 230^{\circ}C$ The characterization of the reaction product shows that saponite was crystallized successfully. After the experimental results, pressure was not sensitive parameter in the range of 25 ∼ 75 kgf/$\textrm{cm}^2$, but longer reaction time results in better crystallinity.