• Title/Summary/Keyword: smart-band

Search Result 269, Processing Time 0.096 seconds

Development of Design for Band Type Heating Vests (밴드형 발열조끼의 디자인 개발)

  • Lee, Byunghong;Lee, Jooeun
    • Journal of Fashion Business
    • /
    • v.19 no.5
    • /
    • pp.93-109
    • /
    • 2015
  • By the influence of ageing population, the well-being trend, and the increase of interest in health, people seems to be enjoying sports and outdoor life more. Followed by the change of consumers' life style, the interest in smart clothing grafting scientific technology has increased, and research on this subject is necessary. This study is to develop improved design of band type heating vests by grasping the weak point of currently sold heating vest designed by the manufacturer. Through this process, satisfaction of the consumer and the manufacturer can be increased. The results of this study are as follows: 1) Conducted a demand survey with the manufacturer and wearing evaluation test with the consumer on band type heating vests. 2) Suggested design drafts on band type heating vests for both genders reflecting demand survey results. 3) Conducted consumers' preference survey for design drafts. 4) Made the sample product, and then conducted an evaluation of wearing the actual product. Overall, the wearing test results showed high satisfaction for both genders.

Real-time Visitor's Behavior Analysis System via Ultra-Wide Band Radar (초광대역 레이더를 이용한 실시간 관람 행태 분석 시스템)

  • Lee, Joosoon;Seo, Hogeon;Lee, Kyoobin
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.85-90
    • /
    • 2019
  • The Ultra-Wide Band sensor is widely used as a wireless indoor localization technology with frequency bands in the GHz range. Meanwhile, in museums, not only the real-time location of visitors but also information on visit route and duration time is required for patrons' behavior analysis. In this paper, the analysis system based Ultra-Wide Band radar for visitor's viewing behavior is introduced and experimented in the real environment. We built the system in National Museum of Korea, and its 22 Ultra-Wide Band radar sensors receive the real-time location of their visitors: this analyzes the visit route and visit time for patrons.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

The Development Model of a non-rechargeable wrist-type smart-band for the vulnerable group

  • YU, Kyoungsung;SHIN, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.170-181
    • /
    • 2022
  • We live in a digital age. Smartphones are used by everyone from children to the elderly. And many smart devices are pouring out and changing our daily life a lot. However, even in the development of this digital age, there are some marginalized groups. There are also those who are reluctant to expose their information in the digital age. They have difficulty making reservations on their smartphones, using payment systems, logging into the site using various authentication and verification procedures, and entering and leaving buildings. We still carry most IDs, seals, certificates, etc. in physical form. Those who use smartphones are enjoying the convenience of the times. However, among the underprivileged, the desire to pass everything with only one device is growing. In this study, the most suitable smart band model was proposed by collecting the Delphi survey and the opinions of the general public. Future research is required to improve practical usability and utility by developing cheaper and more convenient models.

Blood Glucose Measurement and Management System using a Smart Band and an App (스마트 밴드와 앱을 이용한 혈당 측정 및 관리 시스템)

  • Jeon, Yeongjun;Park, Yujin;Kang, SoonJu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • In modern society, awareness of diabetes is growing with an increase in the elderly population and an increase in the incidence of diabetes. In particular, diabetic patients can suddenly develop hypoglycemic shock; therefore, it is important to measure blood glucose periodically. However, self-monitoring blood glucose meters are difficult to carry and it is difficult to manage the value. To solve these problems, the blood glucose measurement system has been developed as a sensor attached to the body or as one of the functions of smart devices, but it has not been commercialized. In this paper, we propose a smart band with a blood glucose measurement function. If a user enters a schedule to measure blood glucose level, such as before/after meals, in the app, he/she can receive a measurement alarm from the band. The user can measure the blood glucose level at any time using the band, and the measured value is transmitted and managed by the app including behavior history such as before/after meals and the time. This will help the user to manage, diagnose and prevent health problems. The system has been tested using two medical device-certified products, and each blood glucose measurement value has been confirmed to be more accurate.

Study on Elimination of EMI in ELF-Band for EPS-Based Smart TV Control (전위계차센서 기반 스마트TV 제어를 위한 극저주파 전자기간섭 제거 연구)

  • Jang, Jin-Soo;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.401-407
    • /
    • 2015
  • In this paper, we propose the method to eliminate EMI (Electro-Magnetic Interference) in ELF (Extremely Low Frequency) band below 2 KHz for extending the gesture-recognition distance of smart TVs to more than 3m using electric potential sensor. First, we measure the electric field generated from the back panel of a TV and propose the effective arrangement of two sets of differential sensors as well as the shielding method using metal fiber. Also, we eliminate the PLN (Power Line Noise) and other noise generated from the TV and sensors as well as surrounding environments using filters. Using the proposed EMI eliminating methods, we evaluate displacement ratio on measured signals according to distance between sensors and a moving hand. Experiment results show that our proposed method can extend the hand-gesture sensing distance using EPS (Electric Potential Sensor) up to more than 3m, which is enough to satisfy applicability of EPS based remote control to Smart TVs.

Development of Smart Soccer Socks Using a Textile Stretch Sensor -Focused on Middle School Girls between the Ages of 14 and 15- (텍스타일형 스트레치 센서를 이용한 스마트 축구 양말 개발 -14~15세 여중생을 중심으로-)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.17-29
    • /
    • 2020
  • This study aimed to produce fiber stretch sensors for smart soccer socks to prevent injuries during training. A sensor was manufactured with stretchable fabric and tested to ensure convenience during training. In order to manufacture the fiber stretch sensor, a CNT dispersion solution was applied to an e-band and elastic polyester fabric, and the performance of the sensors was evaluated by a tensile test. Performance evaluation showed that both of the tested fabrics are excellent for this purpose. Both sensors were attached to socks to create prototype wearable devices, and an experiment was conducted to determine whether a resistance change accompanying relaxation and contraction of the gastrocnemius muscle could be detected. In order to accurately evaluate performance as a sensor, the fabric was stretched 20 times at low speeds of 1 Hz and 0.5 Hz. A change in resistance due to tension was observed, with both the E-band and the stretchable poly fabric showing high sensitivity and high reproducibility. Both can be used as relaxation/contraction sensors. Smart soccer socks were made using the two materials, and an evaluation was conducted. Tensile tests were done on the smart soccer socks; the tests were done 20 times per sock, and the sensor showed a stable resistance change between 30 and 40 ohms depending on the tension of the sensor. As a result, we confirmed that smart soccer socks with stretch sensors made of E-bands can measure changes in the gastrocnemius muscle.

Technological and Personal Factors of Determining the Acceptance of Wrist-Worn Smart Devices

  • Kim, Sun Jin;Cho, Jaehee
    • Asian Journal for Public Opinion Research
    • /
    • v.7 no.3
    • /
    • pp.143-168
    • /
    • 2019
  • With much attention being paid to the rapid growth of wrist-worn smart devices, this study aimed to examine the micro-processes that determine an individual's adoption of smart bands and smartwatches. Primarily relying on the theoretical background of the extended technology acceptance model (TAM II), this study explored relationships between three groups of predictors-social, personal, and device-oriented-and the three main components of the original TAM: perceived usefulness (PU), perceived ease of use (PEOU), and behavioral intention (BI). Results from the path analysis indicated multiple factors played significant roles in increasing the PU, PEOU, and BI of wristworn smart devices: subjective norms, social image, self-efficacy, perceived service diversity, and perceived reasonable cost. The main findings from this research contribute to significantly improving the understanding of the main factors leading people to adopt wrist-worn smart devices.

W-band Frequency Synthesizer Development Based on Interposer Technology Using MMIC Chip Design and Fabrication Results

  • Kim, Wansik;Yeo, Hwanyong;Lee, Juyoung;Kim, Young-Gon;Seo, Mihui;Kim, Sosu
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • In this paper, w-band frequency synthesizer was developed for frequency-modulated continuous wave (FMCW) radar sensors. To achieve a small size and high performance, We designed and manufactured w-band MMIC chips such as up-converter one-chip, multiplier, DA (Drive Amplifier) MMIC(Monolithic Microwave Integrated Circuit), etc. And interposer technology was applied between the W-band multiplier and the DA MMIC chip. As a result, the measured phase noise was -106.10 dBc@1MHz offset, and the frequency switching time of the frequency synthesizer was less than 0.1 usec. Compared with the w-band frequency synthesizer using purchased chips, the developed frequency synthesizer showed better performance.

Performance test for transmitted noise reduction of smart panel using piezoelectric shunt damping (압전 션트를 이용한 패널의 투과소음 저감 성능에 관한 연구)

  • 최진영;김재환;이중근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1120-1125
    • /
    • 2001
  • A new concept of piezoelectric smart panels for noise reduction in wide band frequencies is proposed and their possibility is experimentally investigated. Multi-mode damping is studied by using a newly proposed tuning method. The proposed panels are based on passive shunt damping methods. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. four PZT are attached on smart panel for improving performance of transmission noise reduction. 0 prove the concept of piezoelectric smart panels, an acoustic measurement experiment was performed. The smart panels exhibit a good noise reduction in middle and high frequency ranges due to the mass effects of absorbing materials or/and the air gap. The use of piezoelectric smart panel renders noise reduction at resonance frequency. Noise reduction at multiple resonance frequencies is experimentally investigaed.

  • PDF