• Title/Summary/Keyword: smart sensor network

Search Result 544, Processing Time 0.039 seconds

Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1373-1392
    • /
    • 2015
  • Placing sensors at appropriate locations is an important task in the design of an efficient structural health monitoring (SHM) system for a large-scale civil structure. In this paper, a hybrid optimization algorithm called virus monkey algorithm (VMA) based on the virus theory of evolution is proposed to seek the optimal placement of sensors. Firstly, the dual-structure coding method is adopted instead of binary coding method to code the solution. Then, the VMA is designed to incorporate two populations, a monkey population and a virus population, enabling the horizontal propagation between the monkey and virus individuals and the vertical inheritance of monkey's position information from the previous to following position. Correspondingly, the monkey population in this paper is divided into the superior and inferior monkey populations, and the virus population is divided into the serious and slight virus populations. The serious virus is used to infect the inferior monkey to make it escape from the local optima, while the slight virus is adopted to infect the superior monkey to let it find a better result in the nearby area. This kind of novel virus infection operator enables the coevolution of monkey and virus populations. Finally, the effectiveness of the proposed VMA is demonstrated by designing the sensor network of the Canton Tower, the tallest TV Tower in China. Results show that innovations in the VMA proposed in this paper can improve the convergence of algorithm compared with the original monkey algorithm (MA).

Structural monitoring of wind turbines using wireless sensor networks

  • Swartz, R. Andrew;Lynch, Jerome P.;Zerbst, Stephan;Sweetman, Bert;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Monitoring and economical design of alternative energy generators such as wind turbines is becoming increasingly critical; however acquisition of the dynamic output data can be a time-consuming and costly process. In recent years, low-cost wireless sensors have emerged as an enabling technology for structural monitoring applications. In this study, wireless sensor networks are installed in three operational turbines in order to demonstrate their efficacy in this unique operational environment. The objectives of the first installation are to verify that vibrational (acceleration) data can be collected and transmitted within a turbine tower and that it is comparable to data collected using a traditional tethered system. In the second instrumentation, the wireless network includes strain gauges at the base of the structure. Also, data is collected regarding the performance of the wireless communication channels within the tower. In both turbines, collected wireless sensor data is used for off-line, output-only modal analysis of the ambiently (wind) excited turbine towers. The final installation is on a turbine with embedded braking capabilities within the nacelle to generate an "impulse-like" load at the top of the tower. This ability to apply such a load improves the modal analysis results obtained in cases where ambient excitation fails to be sufficiently broad-band or white. The improved loading allows for computation of true mode shapes, a necessary precursor to many conditional monitoring techniques.

Monitoring System for Optimized Power Management with Indoor Sensor (실내 전력관리 시스템을 위한 환경데이터 인터페이스 설계)

  • Kim, Do-Hyeun;Lee, Kyu-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • As the usages of artificial intelligence is increased, the demand to algorithms for small portable devices increases. Also as the embedded system becomes high-performance, it is possible to implement algorithms for high-speed computation and machine learning as well as operating systems. As the machine learning algorithms process repetitive calculations, it depend on the cloud environment by network connection. For an stand alone system, low power consumption and fast execution by optimized algorithm are required. In this study, for the purpose of smart control, an energy measurement sensor is connected to an embedded system, and a real-time monitoring system is implemented to store measurement information as a database. Continuously measured and stored data is applied to a learning algorithm, which can be utilized for optimal power control, and a system interfacing various sensors required for energy measurement was constructed.

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

Design and fabrication of a 300A class general-purpose current sensor (300A급 일반 산업용 전류센서의 설계 및 제작)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Ku, Myung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Current sensors are used widely in the fields of current control, monitoring, and measuring. They have become more popular with the increasing demand for smart grids in a power network, generation of renewable energy, electric cars, and hybrid cars. Although open loop Hall effect current sensors have merits, such as low cost, small size, and weight, they have low accuracy. This paper describes the design and fabrication of a 300A open loop current sensor that has high accuracy and temperature performance. The core of the current sensor was calculated numerically and the signal conditioning circuits were designed using circuit analysis software. The characteristics of the manufactured open loop current sensor of 300 A class was measured at currents up to 300 A. According to the test of the current sensor, the accuracy error and linearity error were 0.75% and 0.19%, respectively. When the temperature compensation was carried out with the relevant circuit, the temperature coefficients were less than $0.012%/^{\circ}C$ at temperatures between $-25^{\circ}C$ and $85^{\circ}C$.

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.

Development of Convergence Smart Home Platform based on Image Processing and Sensor Network in IoT Environment (IoT환경에서의 센서 네트워크와 영상처리 기반의 융합 스마트 홈 플랫폼 개발)

  • Ahn, Ye-Chan;Lee, Jeong-Pil;Lee, Jae-Wook;Song, Jun-Kwun;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this thesis, we sought to build a home and business environment based on the rapid prototyping technology and network technologies that enabled rapid access to high-speed technologies and technologies. Using the analytic algorithm for image processing techniques, using the analytic algorithm for analyzing and tracking objects in the OpenCV library, trace objects and track objects and control various sensors. It also wants to implement a platform enabling various sensors to collect and record various services by controlling and connecting various sensors through the master Single board and the slave single.

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

Development of Android Smartphone App for Camera-based Remote Monitoring System (카메라 기반의 원격 모니터링 시스템을 위한 안드로이드 스마트폰 앱 개발)

  • Lee, Seong-Kyu;Kim, Jin-Soo;Kim, Young-Seup;Choi, Chul-Uong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.87-96
    • /
    • 2011
  • Recently mobile users can access to internet using smart phone at any place and any time, through which they can search and share information. In addition, as the sensors with high-tech functions become cheaper and miniaturized along with the development of MEMS (micro-electo mechanical systems) technology, the extent to utilize smart phone is increasing. Smart phone is equipped with various sensors such as high-resolution camera, GPS, gyroscope and magnetic sensor, which is an appropriate system configuration for remote monitoring research using camera. The remote monitoring system requires camera for video and internet network to send video, for which it has a limitation that it is influenced by the monitoring location. This study is aimed to design and develop the monitoring app. which can be remotely monitored using smart phone technology. The developed monitoring app was designed to take images of ROI (region of interest) within the specified time and to automatically send the images to the server. The developed app. is also possible to be remotely controlled by SMS (short message service). The monitoring proposed in this study can take high-resolution images using CMOS built in the smart phone and send the images and information to the server automatically at any place and any time using 3G and Wi-Fi networks.