• Title/Summary/Keyword: smart sensor network

Search Result 539, Processing Time 0.025 seconds

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

An Efficient Channel Search Method for Transmitting Massive Multimedia Data (대용량 멀티미디어 데이터 전송을 위한 효율적인 채널 검색 방법)

  • Chung, Kyung Taek;Go, Sung Hyun
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.170-175
    • /
    • 2020
  • It is important to select the most appropriate channel for efficient transmission of massive multimedia data between smart devices in wireless sensor network. In the fixed channel method, sensor nodes can restrict usefulness of frequency and may be a major constraint to support frequency at various environments. In this paper, we propose a modified efficient channel search algorithm that determines available channel and tolerance of interference of links between two nodes. From the results of computer simulation, the proposed method shows that the link of channel can be set efficiently than the other methods even if the number of interference links increases and the beacon packet waiting time caused by interference is reduced remarkably.

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Design and Implementation of Intelligent Aircraft Power Measurement System Based on Embedded (지능형 항공기 전력 계측 임베디드 시스템에 설계 및 구현)

  • Choi, Won-Huyck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.664-671
    • /
    • 2013
  • In this paper, in an aircraft power can be measured by wireless AEMS (aircraft electric power measurement monitoring system) system is proposed. AEMS has been design based on current commercialized power measuring systems analysis with improvement and connects it with most talked about item, smart phone and monitoring system. And also adopting real time power measuring system, constitute more practical power measuring system by controlling electricity usage in real time.

Design and Application of a LonRF Device based Sensor Network for an Ubiquitous Home Network (유비쿼터스 홈네트워크를 위한 LonRF 디바이스 기반의 센서 네트워크 설계 및 응용)

  • Ro Kwang-Hyun;Lee Byung-Bog;Park Ae-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • For realizing an ubiquitous home network(uHome-net), various sensors should be able to be connected to an integrated wire/wireless sensor network. This paper describes an application case of applying LonWorks technology being widely used in control network to wire/wireless sensor network in uHome-net and the design and application of LonRF device that consists of a neuron chip including LonTalk protocol, a 433.92MHz RF transceiver, a sensor, and application programs. As an application example of the LonRF device, the LonRF smart badge that can measure the 3D location of objects in indoor environment and interwork with the uHome-net was developed. LonRF device based home network services were realized on the uHome-net testbed such as indoor positioning service, remote surveillance service and remote metering service were realized. This research shows that LonWorks technology based sensor network could be applicable to the control network in an ubiquitous home network and the LonRF device can be used as a wireless node in various sensor networks.

  • PDF

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

Intelligent Modeling of User Behavior based on FCM Quantization for Smart home (FCM 이산화를 이용한 스마트 홈에서 행동 모델링)

  • Chung, Woo-Yong;Lee, Jae-Hun;Yon, Suk-Hyun;Cho, Young-Wan;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

IoT based Smart Health Service using Motion Recognition for Human UX/UI (모션인식을 활용한 Human UI/UX를 위한 IoT 기반 스마트 헬스 서비스)

  • Park, Sang-Joo;Park, Roy C.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this paper, we proposed IoT based Smart Health Service using Motion Recognition for Human UX/UI. Until now, sensor networks using M2M-based u-healthcare are using non-IP protocol instead of TCP / IP protocol. However, in order to increase the service utilization and facilitate the management of the IoT-based sensor network, many sensors are required to be connected to the Internet. Therefore, IoT-based smart health service is designed considering network mobility because it is necessary to communicate not only the data measured by sensors but also the Internet. In addition, IoT-based smart health service developed smart health service for motion detection as well as bio information unlike existing healthcare platform. WBAN communications used in u-healthcare typically consist of many networked devices and gateways. The method proposed in this paper can easily cope with dynamic changes even in a wireless environment by using a technology supporting mobility between WBAN sensor nodes, and systematic management is performed through detection of a user's motion.

  • PDF