• Title/Summary/Keyword: smart sensor network

Search Result 544, Processing Time 0.026 seconds

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

Implementation of IEEE 1451 based ZigBee Smart Sensor System for Active Telemetries (능동형 텔레매트릭스를 위한 IEEE 1451 기반 ZigBee 스마트 센서 시스템의 구현)

  • Lee, Suk;Song, Young-Hun;Park, Jee-Hun;Kim, Man-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.176-184
    • /
    • 2011
  • As modern megalopolises become more complex and huge, convenience and safety of citizens are main components for a welfare state. In order to make safe society, telemetrics technology, which remotely measures the information of target system using electronic devices, is an essential component. In general, telemetrics technology consists of USN (ubiquitous sensor network) based on a wireless network, smart sensor, and SoC (system on chip). In the smart sensor technology, the following two problems should be overcome. Firstly, because it is very difficult for transducer manufacturers to develop smart sensors that support all the existing network protocols, the smart sensor must be independent of the type of networking protocols. Secondly, smart sensors should be modular so that a faulty sensor element can be replaced without replacing healthy communication element. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based ZigBee smart sensor system. More specifically, a smart sensor for large network coverage has been developed using ZigBee for active telemetrics.

Implementation of Multiple Connectivity using CANopen in IEEE 1451.0-based Smart Sensor (IEEE 1451.0 기반 스마트 센서에서 CANopen을 이용한 다중 접속 기능의 구현)

  • Park, Jee-Hun;Lee, Suk;Song, Young-Hun;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.436-445
    • /
    • 2011
  • As automation systems become intelligent and autonomous for productibility, industrial networks (fieldbuses) and network-based devices are essential components of intelligent manufacturing systems. However, there are obstacles for the wide acceptance of the network-based devices such as smart sensor and network-based actuator. First, there exist numerous fieldbus protocols that a network-based device should be able to support. Second, the whole network-based device has to be replaced when only the sensor of the module fails. In order to overcome these obstacles, a smart sensor/actuator is implemented as two units; one responsible for network communication and the other for sensor/actuator operations using IEEE 1451.0 standard. This paper presents a structure of the 1451.0-based smart sensor with multiple connectivity function designed by CANopen.

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.