• Title/Summary/Keyword: smart sensing

Search Result 607, Processing Time 0.029 seconds

Middleware services for structural health monitoring using smart sensors

  • Nagayama, T.;Spencer, B.F. Jr.;Mechitov, K.A.;Agha, G.A.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.119-137
    • /
    • 2009
  • Smart sensors densely distributed over structures can use their computational and wireless communication capabilities to provide rich information for structural health monitoring (SHM). Though smart sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale structures has been limited. Hardware resources available on smart sensors restrict data acquisition capabilities; intrinsic to these wireless systems are packet loss, data synchronization errors, and relatively slow communication speeds. This paper addresses these issues under the hardware limitation by developing corresponding middleware services. The reliable communication service requires only a few acknowledgement packets to compensate for packet loss. The synchronized sensing service employs a resampling approach leaving the need for strict control of sensing timing. The data aggregation service makes use of application specific knowledge and distributed computing to suppress data transfer requirements. These middleware services are implemented on the Imote2 smart sensor platform, and their efficacy demonstrated experimentally.

Research on Heart Rate Sensing Clothing Design for Seniors Based on Universal Fashion (유니버설 패션에 기반한 시니어 심박측정 의류 디자인 연구)

  • Koo, Hye Ran;Jeon, Dong Jin;Lee, Joo Hyeon
    • Fashion & Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.692-700
    • /
    • 2017
  • The number of elderly citizens has risen in Korea and resulted in an aging society. Correspondingly, the social interest in the aging population has escalated immensely; however, research or product development on the quality of life for seniors has shortcomings. Healthcare smart clothing is required to help the elderly with changes and weaknesses that follow aging; however, there is unfortunately insufficient amounts available. This study explores the feasibilities of smart clothing for seniors based on a universal design. Based on previous research, we analyzed the universal design theory, body shape characteristics and design requirements for seniors, and heart rate measurement method. The design is different according to body shape and body shape is different between sex, age, and body race; therefore, subjects were limited to 70-74 year old Korean males in this study. This study proposes a guideline for heart rate sensing clothing that satisfies the 'universal design' aspects as well as the functionality of heart sensing, senior's physical characteristics and needs. It has broadened the range of smart clothing, which was once limited to the younger generation and provided a foundation for the development of specialized smart clothing for seniors.

A threshold decision of the object image by using the smart tag

  • Im, Chang-Jun;Kim, Jin-Young;Joung, Kwan-Young;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2368-2372
    • /
    • 2005
  • We proposed a novel method for object recognition using the Smart tag system in the previous research. We identified the object easily, but could not assure the object pose, because the threshold problem was not solved. So we propose a new method to solve this threshold problem. This method uses a smart tag to decide the threshold by recording color information of the image when the object feature is extracted. This method records the original of the object color information at the smart tag first. And then it records the object image information, the circumstance image information and the sensors information continuously when the object feature is extracted through the experiments. Finally, it estimates the current threshold by recorded information. This method can be applied the threshold to each objects. And it can solve the difficult threshold decision problem easily. To approve the possibility of our method, we implemented our approach by using easy and simple techniques as possible.

  • PDF

A Development of Smart Sensing Device for Monitoring Abnormal Vibration of Industrial Equipment (산업 설비의 이상 진동 감지를 위한 스마트 센싱 디바이스의 개발)

  • Ryu, Dae-Hyun;Choi, Tae-Wan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.361-366
    • /
    • 2017
  • The abnormal state of the main equipment across the industry is accompanied by abnormal rise of temperature, change in the vibration and noise. In this study, we developed a smart sensing module equipped with BLE, and developed a smart sensing device that can detect abnormal vibration due to its own flaws of the equipment by interfacing with an MEMS-based acceleration sensor. The smart sensing device developed in this study can be easily installed in a small space and can monitor the vibration status of the equipment in real time, and can easily inform the user of the steady state and the problem occurrence status with array LED display.

A Fusion Context-Aware Model based on Hybrid Sensing for Recommendation Smart Service (지능형 스마트 서비스를 위한 하이브리드 센싱 기반의 퓨전 상황인지 모델)

  • Kim, Svetlana;Yoon, YongIk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Variety of smart devices including smart phone have become and essential item in user's daily life. This means that smart devices are good mediators to get collecting user's behavior by sensors mounted on the devices. The information from smart devices is important clues to identify by analyzing the user's preferences and needs. Through this, the intelligent service which is fitted to the user is possible. This paper propose a smart service recommendation model based on user scenario using fusion context-awareness. The information for recommendation services is collected to make the scenario depending on time, location, action based on the Fusion process. The scenarios can help predict a user's situation and provide the services in advance. Also, content categories as well as the content types are determined depending on the scenario. The scenario is a method for providing the best service as well as a basis for the user's situation. Using this method, proposing a smart service model with the fusion context-awareness based on the hybrid sensing is the goal of this paper.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Developing a Prototype of Motion-sensing Smart Leggings (동작센싱 스마트레깅스 프로토타입 개발)

  • Jin-Hee Hwang;Seunghyun Jee;Sun Hee Kim
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.694-706
    • /
    • 2022
  • This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.

Short-range sensing for fruit tree water stress detection and monitoring in orchards: a review

  • Sumaiya Islam;Md Nasim Reza;Shahriar Ahmed;Md Shaha Nur Kabir;Sun-Ok Chung;Heetae Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.883-902
    • /
    • 2023
  • Water is critical to the health and productivity of fruit trees. Efficient monitoring of water stress is essential for optimizing irrigation practices and ensuring sustainable fruit production. Short-range sensing can be reliable, rapid, inexpensive, and used for applications based on well-developed and validated algorithms. This paper reviews the recent advancement in fruit tree water stress detection via short-range sensing, which can be used for irrigation scheduling in orchards. Thermal imagery, near-infrared, and shortwave infrared methods are widely used for crop water stress detection. This review also presents research demonstrating the efficacy of short-range sensing in detecting water stress indicators in different fruit tree species. These indicators include changes in leaf temperature, stomatal conductance, chlorophyll content, and canopy reflectance. Short-range sensing enables precision irrigation strategies by utilizing real-time data to customize water applications for individual fruit trees or specific orchard areas. This approach leads to benefits, such as water conservation, optimized resource utilization, and improved fruit quality and yield. Short-range sensing shows great promise for potentially changing water stress monitoring in fruit trees. It could become a useful tool for effective fruit tree water stress management through continued research and development.

Biological smart sensing strategies in weakly electric fish

  • Nelson, Mark E.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • Biological sensory systems continuously monitor and analyze changes in real-world environments that are relevant to an animal's specific behavioral needs and goals. Understanding the sensory mechanisms and information processing principles that biological systems utilize for efficient sensory data acquisition may provide useful guidance for the design of smart-sensing systems in engineering applications. Weakly electric fish, which use self-generated electrical energy to actively sense their environment, provide an excellent model system for studying biological principles of sensory data acquisition. The electrosensory system enables these fish to hunt and navigate at night without the use of visual cues. To achieve reliable, real-time task performance, the electrosensory system implements a number of smart sensing strategies, including efficient stimulus encoding, multi-scale virtual sensor arrays, task-dependent filtering and online subtraction of sensory expectation.

Design of an Compound Environment Sensing Platform for Sharing Environment Information between Smart Devices (스마트 기기 간의 정보 공유를 위한 복합 환경센서 플랫폼 설계)

  • Song, Byoung-chul;Lim, Seung-ok;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.543-544
    • /
    • 2014
  • In this paper, we present the design of a compound sensing platform to share environment information with other smart devices such as a gateway, a phone, a pad, etc. The proposed compound sensing platform is designed as a single-board hardware to support air temperature and humidity, soil temperature and humidity, solar visible radiation, etc. It sends the measured information to a smart gateway which shares the information with smart phones and pads by Twitter.

  • PDF