• Title/Summary/Keyword: smart sensing

Search Result 612, Processing Time 0.023 seconds

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.

Sensing and Compression Rate Selection with Energy-Allocation in Solar-Powered Wireless Sensor Networks

  • Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2017
  • Solar-powered wireless sensor nodes can use extra energy to obtain additional data to increase the precision. However, if the amount of data sensed is increased indiscriminately, the overhead of relay nodes may increase, and their energy may be exhausted. In this paper, we introduce a sensing and compression rate selection scheme to increase the amount of data obtained while preventing energy exhaustion. In this scheme, the neighbor nodes of the sink node determine the limit of data to be transmitted according to the allocated energy and their descendant nodes, and the other nodes select a compression algorithm appropriate to the allocated energy and the limitation of data to be transmitted. A simulation result verifies that the proposed scheme gathers more data with a lower number of blackout nodes than other schemes. We also found that it adapts better to changes in node density and the amount of energy harvested.

A Study on Smart Tourism Based on Face Recognition Using Smartphone

  • Ryu, Ki-Hwan;Lee, Myoung-Su
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.39-47
    • /
    • 2016
  • This study is a smart tourism research based on face recognition applied system that manages individual information of foreign tourists to smartphone. It is a way to authenticate by using face recognition, which is biometric information, as a technology applied to identification inquiry, immigration control, etc. and it is designed so that tourism companies can provide customized service to customers by applying algorism to smartphone. The smart tourism system based on face recognition is a system that prepares the reception service by sending the information to smartphone of tourist service company guide in real time after taking faces of foreign tourists who enter Korea for the first time with glasses attached to the camera. The smart tourism based on face recognition is personal information recognition technology, speech recognition technology, sensing technology, artificial intelligence personal information recognition technology, etc. Especially, artificial intelligence personal information recognition technology is a system that enables the tourism service company to implement the self-promotion function to commemorate the visit of foreign tourists and that enables tourists to participate in events and experience them directly. Since the application of smart tourism based on face recognition can utilize unique facial data and image features, it can be beneficially utilized for service companies that require accurate user authentication and service companies that prioritize security. However, in terms of sharing information by government organizations and private companies, preemptive measures such as the introduction of security systems should be taken.

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

A Study for Development Status of Functional Bedding -Focusing on Smart Bedding Based on Internet of Things- (국내외 기능성 침구 개발 현황에 관한 연구 -IoT(Internet of Things) 기술기반 스마트 침구를 중심으로-)

  • Yoon, Subin;Kim, Seongdal
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • Various types of functional bedding for inducing and maintaining sleep, are developed and launched with the importance of improving health through sleep emphasized currently. The purpose of this study is to examine development status and direction of functional bedding in the $4^{th}$ Industrial Revolution era, through systematic classification of elements of IoT-based smart bedding cases actively developed as functional bedding at home and abroad. Through previous research, literature and Internet data, characteristics and functional extension of smart bedding and the background of smart bed development was analyzed. And it was analyzed that smart bedding pursues recent functionalism and convergence of physical and digital concept such as IoT or AI, and also mental value to improve sleep quality. As bedroom where smart bedding place in has the private and limited characteristics and users are in sleep-conscious, that hard to ensure power and discomfort in carrying are moderated and the aesthetic elements are not very important, and that the smart bedding performance while sleeping were affected on developmental background. Based on CES case study and analysis on how smart beds are functionally expanded from conventional bedding, smart beds have gained information through digital sensing, and common properties that can be controlled anytime, anywhere, using a smart phone. Some set up the right environment and pose, while others stimulate nerves directly as active intervention. It is expected that smart bedding will be developed to cure user's body and mind, through active intervention when sleeping.

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Under-Thread Sewing Yarn Sensing Monitoring System of Sewing Machine for Smart Manufacturing (스마트 제조를 위한 봉제기의 밑실 센싱 모니터링 시스템)

  • Lee, Dae-Hee;Lee, Jae-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The ICT concept has been introduced to realize a highly productive smart factory and respond to the demand for small quantity and mass production between textile processes. ICT convergence monitoring system that can produce high productivity textile products by improving product development period, cost, quality and delivery time through ICT based production and optimization of manufacturing process is needed. In this paper, we propose and implement a system design that senses the amount of remaining sewing material using a non-contact sensor that can be mounted on a sewing machine and displays it on a display using IOT-based LATTE-PANDA board.