• 제목/요약/키워드: smart rubber beam

검색결과 2건 처리시간 0.014초

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method

  • Manna, M.C.;Bhattacharyya, R.;Sheikh, A.H.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.889-903
    • /
    • 2010
  • Idea of using piezoelectric materials with flexible structures made of rubber-like materials is quite novel. In this study a non-linear finite element model based on updated Lagrangian (UL) approach has been developed for dynamic response and its control of rubber-elastic material with surface-bonded PVDF patches/layers. A compressible stain energy density function has been used for the modeling of the rubber component. The results obtained are compared with available analytical solutions and other published results in some cases. Some results are reported as new results which will be useful for future references since the number of published results is not sufficient.