• Title/Summary/Keyword: smart interface

Search Result 745, Processing Time 0.029 seconds

Optical Coherence Tomography Applications for Dental Diagnostic Imaging: Prototype System Performance and Preclinical Trial

  • Eun Seo Choi;Won-Jin Yi;Chang-Seok Kim;Woosub Song;Byeong-il Lee
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • An intraoral spectral domain optical coherence tomography (SD-OCT) system has been developed, using a custom-built hand-held scanner and spectrometer. The hand-held OCT probe, based on a microelectromechanical systems scanner and a self-built miniaturized drive circuit, had a field of view sufficient for dental diagnosis. The spectrometer using a fabricated f-theta lens provided the image depth required for dental diagnosis. The axial and transverse resolutions of the OCT system in air were 7.5 ㎛ and 12 ㎛ respectively. The hand-held probe could scan an area of 10 × 10 mm2, and the spectrometer could image along a depth of 2.5 mm. To verify the utility of the developed OCT system, OCT images of tooth hard and soft tissues were acquired, and a user-interface program for diagnosis was developed. Early caries and microcracks that were difficult to diagnose with existing methods could be found, and the state of restoration could be observed. Measuring the depth of the gingival sulcus, distinguishing subgingival calculus, and detecting an implant under the gingiva suggested the possibility of the SD-OCT system as a diagnostic for dental soft tissues. Through the presented OCT images, the capability of the developed SD-OCT system for dental diagnosis was demonstrated.

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

A shopping cart system that enables an efficient shopping experience (효율적인 쇼핑 경험을 위한 자동화된 쇼핑 카트 시스템)

  • Jai Soon Baek;Kang Min Lee;Mi So Kang;Tae Hyun Shin;Soo Bin Lee;Min Hyuk Choi;Sung Jin Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.665-667
    • /
    • 2023
  • 본 논문에서는 효율적인 쇼핑 경험을 제공하기 위해 숏카트라는 자동화된 쇼핑 카트 시스템을 제안한다. 숏카트는 사용자의 편의성을 높이기 위해 자동화 기술을 활용하며, 사용자가 상품을 선택하면 카메라를 통해 바코드를 인식하고, Python을 활용하여 바코드값을 읽어온다. 읽어온 바코드 값을 데이터베이스의 바코드 값들과 비교하여 동일한 값을 가진 상품을 사용자의 장바구니에 자동으로 추가한다. 이를 통해 사용자는 편리하게 상품을 선택하고, 계산 과정을 자동화하여 시간을 절약할 수 있다. 또한, GUI 프로그램을 PyQT로 개발하여 사용자에게 시각적으로 장바구니 내용을 표시해 준다.

  • PDF

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai;Yuanxue Liu;Guangjian Gao;Shuang Su
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.195-205
    • /
    • 2023
  • The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Implementing I/O Bandwidth Sharing Scheme between Multiple Linux Containers based on Dm-zoned for Zoned Namespace SSDs

  • Seokjun Lee;Sungyong Ahn
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.237-245
    • /
    • 2023
  • In the cloud service, system resource such as CPU, memory, I/O bandwidth are shared among multiple users. Particularly, in Linux containers environment, I/O bandwidth is distributed in proportion to the weight of each container through the BFQ I/O scheduler. However, since the I/O scheduler can only be applied to conventional block storage devices, it cannot be applied to Zoned Namespace(ZNS) SSD, a new storage interface that has been recently studied. To overcome this limitation, in this paper, we implemented a weighted proportional I/O bandwidth sharing scheme for ZNS SSDs in dm-zoned, which emulates conventional block storage using ZNS SSDs. Each user receives a different amount of budget, which is required to process the user's I/O requests based on the user's weight. If the budget is exhausted I/O requests cannot be processed and requests are queued until the budget replenished. Each budget refill period, the budget is replenished based on the user's weight. In the experiment, as a result, we can confirm that the I/O bandwidth can be distributed on their weight as we expected.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.

Development of an Analysis Tool for Production Time for Components Machined by Turning (선삭 가공 부품의 생산 시간 분석 툴 개발)

  • Jin-Woo Choi
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.51-56
    • /
    • 2024
  • In this study, a tool was developed for analyzing production lead time in turning operations. It is expected to help to reduce machining time and to identify, for example, tool change intervals. The tool was developed using Visual Basic.Net and features a user-friendly graphical user interface (GUI) that allows users to easily input cutting conditions and calculate the usage time and feeding distance for each cutting tool based on a G-code program. Object-oriented programming techniques were also used to encapsulate and classify complex logic, thereby efficiently organizing and managing the functions and data structures of this analysis tool. The analysis tool provides various outputs. It calculates the use time of each detailed process of the turning operation, the use time of each tool, the use time of each type of feeding, and also generates the data needed for cutting time analysis, which can be visualized in charts. The analysis tool developed in this study is expected to significantly contribute to improving the efficiency of manufacturing processes and increasing productivity, particularly, in the manufacturing of components requiring massive material removal, such as aircraft parts.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.