• Title/Summary/Keyword: smart function

Search Result 1,423, Processing Time 0.03 seconds

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

Design and Implementation of Contact Control Smart Phone Application

  • Ko, Yong Min;Lim, Dong Kyun;Min, Byong Seok
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.30-31
    • /
    • 2013
  • In the recent years, as smart phones popularized, the number of people who use IMS (instant messaging service) and SNS (social network service) rapidly has increased as the usage of SMS (short message service) relatively decreased. That is why this thesis suggests a contact control service based on Android. It contains an inducing function that calls acquaintances, which were given a score based on the level of familiarity from saved contacts and call logs. And it provides an overall ranking of call log in order to grasp frequently called people. This developed system was tested on Samsung Galaxy S2 and LG Optimus LTE / Android 2.2 which were the main smart phone models.

The Mouse & Keyboard Control Application based on Smart Phone (스마트 폰 기반의 마우스와 키보드 제어 어플리케이션)

  • Lim, Yang Mi
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.396-403
    • /
    • 2017
  • In recent years, the use of touch screens has expanded, and devices such as remote controllers have been developed in various ways to control and access contents at long range. The wireless-based touch screen is used in classroom, seminar room, and remote video conversation in addition to the TV remote control. The purpose of the study is to design a smart phone-based intuitive interface that can perform the role of a wireless mouse and a wireless keyboard at range using Bluetooth and to develop an application that integrates functions of a mouse and a keyboard. Firstly, touch interaction model for controlling software such as PowerPoint by connecting to a general PC on a smart phone has been studied. The most simple touch operation interface is used to reproduce the function of existing devices and design more simply. The studies of the extension of interfaces with various functions are important, but development of optimized interfaces for users will become more important in the future. In this sense, this study is valuable.

Synthetic bio-actuators and their applications in biomedicine

  • Neiman, Veronica J.;Varghese, Shyni
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.185-198
    • /
    • 2011
  • The promise of biomimetic smart structures that can function as sensors and actuators in biomedicine is enormous. Technological development in the field of stimuli-responsive shape memory polymers have opened up a new avenue of applications for polymer-based synthetic actuators. Such synthetic actuators mimic various attributes of living organisms including responsiveness to stimuli, shape memory, selectivity, motility, and organization. This article briefly reviews various stimuli-responsive shape memory polymers and their application as bioactuators. Although the technological advancements have prototyped the potential applications of these smart materials, their widespread commercialization depends on many factors such as sensitivity, versatility, moldability, robustness, and cost.

The Smart User Interface Platform for Mobile Devices (휴대단말을 위한 지능형 사용자 인터페이스 플랫폼)

  • Park, Kyung Min;Choi, Hoon;Lee, Ghang-Gun;Whang, In-Tae;Lee, Chil-Woo
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • A software platform for the next-generation, smart user-interface of mobile devices is described as in this paper. The proposed platform is developed to adapt new devices that may appear in the future through extending the Android platform. Dynamic loading function of software module is developed in order to download and install new software modules for the new devices. Also, platform technology for utilizing external devices to improve quality of service and dynamic switching of wireless interface to reduce power consumption of platform are developed.

  • PDF

A Study on Fabrication and Characteristics of Large Area Liquid-Crystal Cell for Smart-Window (스마트윈도우용 대면적 액정셀 제작과 특성에 대한 연구)

  • Lee, Seung-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • Smart windows are used as windows and doors to determine cooling and heating efficiency in the construction field. It's characteristics can increase the energy saving efficiency. In addition, the function of the smart window that can control the light transmittance transmitted from the external environment of the building to the building according to the needs of the user is attracting attention. In this study, a liquid crystal cell capable of controlling light transmittance of 297 × 210 ㎟ was fabricated by using a liquid crystal device as an optical shutter. Analysis of transmittance change according to driving voltage and driving stability according to thermal environment, We confirmed the applicability of building exterior materials as smart windows.

  • PDF

Power demand pattern analysis for electric appliances in residential and commercial building (주택 및 사무용 빌딩 내 전기기기의 전력 수요 패턴 분석)

  • Noh, Sung-Jun;Lee, Soon-Jeong;Lee, Sang-Woo;Kim, Kwang-Ho
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.9-15
    • /
    • 2010
  • Recently, Smart Grid is a emerging topic in power and communication industry. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. In order to successful implementation of Smart Grid, energy management function will be the key factor that coordinates and optimally controls the various loads according to the operating condition and environments, and the load patterns in residential and commercial building will be required as fundamental element for load management. In this study, we collects many types of energy usage data of electric appliances, analyze their load curves, and make the general load patterns for electrical appliance.

  • PDF

Gastrointestinal Tract Abnormalities Induced by Prenatal Valproic Acid Exposure in Rat Offspring

  • Kim, Ji-Woon;Choi, Chang Soon;Kim, Ki Chan;Park, Jin Hee;Seung, Hana;Joo, So Hyun;Yang, Sung Min;Shin, Chan Young;Park, Seung Hwa
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.173-179
    • /
    • 2013
  • In-utero exposure to valproic acid (VPA) has been known as a potent inducer of autism spectrum disorder (ASD), not only in humans, but also in animals. In addition to the defects in communication and social interaction as well as repetitive behaviors, ASD patients usually suffer from gastrointestinal (GI) problems. However, the exact mechanism underlying these disorders is not known. In this study, we examined the gross GI tract structure and GI motility in a VPA animal model of ASD. On embryonic day 12 (E12), 4 pregnant Sprague-Dawley (SD) rats were subcutaneously injected with VPA (400 mg/kg) in the treatment group, and with phosphate buffered saline (PBS) in the control group; the resulting male offspring were analyzed at 4 weeks of age. VPA exposure decreased the thickness of tunica mucosa and tunica muscularis in the stomach and ileum. Other regions such as duodenum, jejunum, and colon did not show a significant difference. In high-resolution microscopic observation, atrophy of the parietal and chief cells in the stomach and absorptive cells in the ileum was observed. In addition, decreased staining of the epithelial cells was observed in the hematoxylin and eosin (H&E)-stained ileum section. Furthermore, decreased motility in GI tract was also observed in rat offspring prenatally exposed to VPA. However, the mechanism underlying GI tract defects in VPA animal model as well as the association between abnormal GI structure and function with ASD is yet to be clearly understood. Nevertheless, the results from the present study suggest that this VPA ASD model undergoes abnormal changes in the GI structure and function, which in turn could provide beneficial clues pertaining to the pathophysiological relevance of GI complications and ASD phenotypes.

A Study on Manufacturing Method of High Performance Smart EMW Absorber with Heat Radiating Function and Its Prospects (방열 기능형 고성능 스마트 전파흡수체 제조 방법 개발 및 전망)

  • Kim, Dong Il;Jeon, Yong Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.841-850
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW(Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution(ANSI), Federal Communications Commission(FCC), the Comite Internationale Special des Perturbations Radio Electrique(CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility(EMC). In this paper, fabrication of the smart EMW absorber which has heat radiating function and high performance absorption abilities were suggested. Furthermore, we prospected future smart EMW absorbers. The designed smart EMW absorber is fabricated following process. Firstly, we applied high temperature heat treated to a mixture of Iron-oxide($Fe_2O_3$) and ceramics. Secondly, we applied low temperature heat treated to the mixture of heat treated material and a carbon material. Lastly, we made apertures on the absorber. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.