• Title/Summary/Keyword: smart energy

Search Result 1,863, Processing Time 0.031 seconds

A Study on the Future Dwelling Functions through Domestic Future House Pavilions - Focused on 5 cases of Future House Pavilion in the Metropolitan Area - (국내 미래주택관을 통해서 본 미래 주거기능 경향 연구 - 수도권 미래주택관 5곳을 중심으로 -)

  • Park, Jong-Hye;Shin, Kyung-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.2
    • /
    • pp.3-13
    • /
    • 2012
  • With the emergence of the smart era, interest in future society and new dwelling spaces is growing. This research analyzes the planning items applied to future house pavilions in Korea to examine which functions will be more emphasized and considered importantly in the dwelling spaces. This research paper aims to identify those dwelling functions that will occupy greater importance from the users' point of view. As for the research methodology, it comprised a literature review and an analysis of case studies. The results of this research were as follows; 1) It was arranged that the dwelling functions were safety, amenity, convenience, independence, economics, society, relaxation, aesthetic appearance. 2) For future dwelling environments, environment-friendly technology for conservation of energy was important in addition to intellectual cutting edge technologies, 3) Safety was most basic among all dwelling functions, 4) Planning items related to amenity and economics were found to be most common, indicating that they were important functions in future dwelling environments, 5) With regard to convenience, planning items related to increasing efficiency of household chores through the application of ubiquitous technology were found to be most common, 6) There was no indication of planning items related to independence and society, 7) Cutting edge technology and emotional technology appear to be integrated in planning items related to relaxation and aesthetic appearance, and 8) Each future dwelling pavilion suggested that over 80% of the planning items were related to amenity, convenience, and economics. We expect that the results from our research will be useful in creating a life-centered design of future dwelling spaces that account for dwelling functions.

  • PDF

Effect of the Design Parameters Change on the Hybrid Dynamometer Braking Performance (혼성동력계에서 주요 설계변수가 제동성능에 미치는 효과분석)

  • Lee, Jong-Hoon;Hwang, Jai-Hyuk;Jeong, Min-Ji;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.981-988
    • /
    • 2016
  • Dynamometer is a device for testing the performance of the brake and it is composed of a test zone, the mechanical inertia zone, the electric motor and the control zone. Hybrid dynamometer is a way to compensate for the loss of mechanical inertia in accordance with the brake operation by using an electric motor to reduce the size of the mechanical inertia with the advantage that can be tested in the relatively small size of the mechanical inertia and low cost. In this paper, design the proper size of hybrid dynamometer in the laboratory level with the space constraints, analysed the effect of critical parameter on the braking performance of hybrid dynamometer such as changing the friction coefficient. With this study, could get the results of guideline to judge the poor friction material by measuring the torque of the electric motor to compensate the energy loss due to a reduced mechanical inertia.

On the NiTi wires in dampers for stayed cables

  • Torra, Vicenc;Carreras, Guillem;Casciati, Sara;Terriault, Patrick
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.353-374
    • /
    • 2014
  • Recent studies were dedicated to the realization of measurements on stay-cable samples of different geometry and static conditions as available at several facilities. The elaboration of the acquired data showed a a satisfactory efficacy of the dampers made of NiTi wires in smoothing the cable oscillations. A further attempt to investigate the applicability of the achieved results beyond the specific case-studies represented by the tested cable-stayed samples is herein pursued. Comparative studies are carried out by varying the diameter of the NiTi wire so that similar measurements can be taken also from laboratory steel cables of reduced size. Details of the preparation of the Ni-Ti wires are discussed with particular attention being paid to the suppression of the creep phenomenon. The resulting shape of the hysteretic cycle differs according to the wire diameter, which affects the order of the fitting polynomial to be used when trying to retrieve the experimental results by numerical analyses. For a NiTi wire of given diameter, an estimate of the amount of dissipated energy per cycle is given at low levels of maximum strain, which correspond to a fatigue fracture life of the order of millions of cycles. The dissipative capability is affected by both the temperature and the cycling frequency at which the tests are performed. Such effects are quantified and an ageing process is proposed in order to extend the working temperature range of the damper to cold weathers typical of the winter season in Northern Europe and Canada. A procedure for the simulation of the shape memory alloy behavior in lengthy cables by finite element analysis is eventually outlined.

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.

A New Prediction Model for Power Consumption with Local Weather Information (지역 기상 정보를 활용한 단기 전력 수요 예측 모델)

  • Tak, Haesung;Kim, Taeyong;Cho, Hwan-Gue;Kim, Heeje
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.488-498
    • /
    • 2016
  • Much of the information is stored as data, research has been activated for analyzing the data and predicting the special circumstances. In the case of power data, the studies, such as research of renewable energy utilization, power prediction depending on site characteristics, smart grid, and micro-grid, is actively in progress. In this paper, we propose a power prediction model using the substation environment data. In this case, we try to verify the power prediction result to reflect the multiple arguments on the power and weather data, rather than a simple power data. The validation process is the effect of multiple factors compared to other two methods, one of power prediction result considering power data and the other result using power pattern data that have been made in the similar weather data. Our system shows that it can achieve max prediction error of less than 15%.

Exploration of emerging technologies based on patent analysis in complex product systems for catch-up: the case of gas turbine (복합제품시스템 추격을 위한 특허 기반 부상기술 탐색: 가스터빈 사례를 중심으로)

  • Kwak, Kiho;Park, Joohyoung
    • Knowledge Management Research
    • /
    • v.17 no.2
    • /
    • pp.27-50
    • /
    • 2016
  • Korean manufacturing industry have recently faced the catch-up of China in the mass commodity product, such as automotive, display, and smart phone in terms of market as well as technology. Accordingly, discussion on the importance of achieving catch-up in complex product systems (CoPS) has been increasing as a new innovation engine for the industry. In order to achieve successful catch-up of CoPS, we explored emerging technologies of CoPS, which are featured by the characteristics of radical novelty, relatively fast growth and self-sustaining, through the study of emerging technologies of gas turbine for power generation. We found that emerging technologies of the gas turbine are technologies for combustion nozzle and composition of electrical machine for increasing power efficiency, washing technology for particulate matter, cast and material processing technology for enhancing durability from fatigue, cooling technologies from extremely high temperature, interconnection operation technology between renewable energy and the gas turbine for flexibility in power generation, and big data technology for remote monitoring and diagnosis of the gas turbine. We also found that those emerging technologies resulted in technological progress of the gas turbine by converging with other conventional technologies in the gas turbine. It indicates that emerging technologies in CoPS can be appeared on various technological knowledge fields and have complementary relationship with conventional technologies for technology progress of CoPS. It also implies that latecomers need to pursue integrated learning that includes emerging technologies as well as conventional technologies rather than independent learning related to emerging technologies for successful catch-up of CoPS. Our findings provide an important initial theoretical ground for investigating the emerging technologies and their characteristics in CoPS as well as recognizing knowledge management strategy for successful catch-up of latecomers. Our findings also contribute to the policy development of the CoPS from the perspective of innovation strategy and knowledge management.

Development of Home Automation Robots using Face Recognition Image Processing (안면인식 영상처리를 활용한 가정용 로봇 개발)

  • Choi, Min-kyu;Woo, In-hyuk;Kim, Dong-hyuk;Ahn, Yong-hyun;Han, Joon-ho;Park, Joo-young;Ko, Ji-hye;Park, Je-hee;Moon, Ha-young;Kim, Min-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.374-376
    • /
    • 2018
  • In this study, we developed a mobile home robot using a face recognition method using a camera attached to a raspberry pie. It receives the real time image through the camera attached to the raspberry pie, recognizes the face of the person, and distinguishes the operation of the smart cool air temperature device according to the result. It is expected that the robot will be able to increase the energy utilization efficiency by allowing the robot to operate in cold and hot winds only where there is no human being, instead of operating the hot and cold air conditioner.

  • PDF

Implementation of a Coded Aperture Imaging System for Gamma Measurement and Experimental Feasibility Tests

  • Kim, Kwangdon;Lee, Hakjae;Jang, Jinwook;Chung, Yonghyun;Lee, Donghoon;Park, Chanwoo;Joung, Jinhun;Kim, Yongkwon;Lee, Kisung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • Radioactive materials are used in medicine, non-destructive testing, and nuclear plants. Source localization is especially important during nuclear decommissioning and decontamination because the actual location of the radioactive source within nuclear waste is often unknown. The coded-aperture imaging technique started with space exploration and moved into X-ray and gamma ray imaging, which have imaging process characteristics similar to each other. In this study, we simulated $21{\times}21$ and $37{\times}37$ coded aperture collimators based on a modified uniformly redundant array (MURA) pattern to make a gamma imaging system that can localize a gamma-ray source. We designed a $21{\times}21$ coded aperture collimator that matches our gamma imaging detector and did feasibility experiments with the coded aperture imaging system. We evaluated the performance of each collimator, from 2 mm to 10 mm thicknesses (at 2 mm intervals) using root mean square error (RMSE) and sensitivity in a simulation. In experimental results, the full width half maximum (FWHM) of the point source was $5.09^{\circ}$ at the center and $4.82^{\circ}$ at the location of the source was $9^{\circ}$. We will continue to improve the decoding algorithm and optimize the collimator for high-energy gamma rays emitted from a nuclear power plant.

A Study on Improvement of Indoor Positioning Accuracy Using Diagonal Survey Method (대각측량 방식을 이용한 실내 측위 정확도 개선에 관한 연구)

  • Jeong, Hyun gi;Park, Tae hyun;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.160-172
    • /
    • 2018
  • The method of estimating a position using a GPS has been applied to various fields including a navigation system of an automobile. However, since it is difficult to measure GPS signals indoors, it is difficult to locate specific objects indoors such as a building or factory. To overcome these limitations, this study proposes a system for object location estimation based on Bluetooth5 for the management of materials in factories. The object position estimation system consists of a Bluetooth signal generator, a receiver, and a database server. A signal generator based on Bluetooth Low Energy(BLE) is attached to the material and a receiver is appropriately arranged inside the factory. In this study, we propose "Diagonal Survey Method", a 4 - axis survey algorithm using four receivers to reduce the error of existing trilateration method. The proposed algorithm showed good performance compared to the conventional trilateration and we verified the effectiveness of the proposed system and algorithm by performing the experiment by installing the system in the factory.

Bicycle Accident Position Tracing and Alarm System (자전거 사고 위치 추적 및 알림 시스템)

  • Kim, Jang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.93-98
    • /
    • 2014
  • Bicycle accidents increase as the number of people riding bicycles increases following the trend try to enhance health and looking for alternative energy sources in the era of high oil price. In bicycle accident cases, physical risk is higher because the impact of the accident has a direct effect on the body of the rider. Therefore, the bicycle rider in an accident might unable to report the accident by themselves, thus, unable to quickly respond to the accident situation. This study developed a system for informing bicycle accidents upon bicycle accident by reporting and texting the accident location using a smart phone application after identifying the accident location using a GPS equipment based on the signal that senses the accident through the system installed in the bicycle for the purpose to improve bicycle riders' safety. This study confirmed the effectiveness of the system developed to quickly respond to the accident to prevent secondary damage through an experiment.