• Title/Summary/Keyword: smart control and analysis

Search Result 711, Processing Time 0.031 seconds

Performance Effectiveness Case Study of the Machine Guidance System for Dozer Eartwrok Grading Work (도저 정지작업 시 머신 가이던스 시스템 적용에 따른 토공성과 향상 사례분석)

  • Moon, Sungwoo;Kim, Sangtae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.78-86
    • /
    • 2020
  • Dozer is an expensive construction equipment and has a significant performance impact on earthwork performance. A machine guidance system has been applied to dozer equipment as a solution that can improve the performance. The system can provide earthwork-related information to equipment operators so that earthworks can be carried out with minimum support from surveyors. Construction Equipment Machine guidance has the function of supporting earthwork according to an earthwork plan by providing excavation-related information to machine operators. The objective of this study is to evaluate the performance improvement of a machine guidance system for an dozer earthwork operation, and to compare the machine guidance method with the traditional method. The performance has been evaluated in two folds: 1) productivity and 2) accuracy. The productivity shows the quantity of earthwork for a given unit time. The accuracy shows the deviation of grading level from the designed level on the construction drawing for earthwork. The machine guidance system has been applied to a testing bed in a construction site. Data comparison analysis showed that the earth earthwork had 46.59% improvement in productivity as well as 46.96% improvement in accuracy, and is expected to provide a tool for applying smart constrction to the earthwork operation.

Study on Analysis of Queen Bee Sound Patterns (여왕벌 사운드 패턴 분석에 대한 연구)

  • Kim Joon Ho;Han Wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • Recently, many problems are occurring in the bee ecosystem due to rapid climate change. The decline in the bee population and changes in the flowering period are having a huge impact on the harvest of bee-keepers. Since it is impossible to continuously observe the beehives in the hive with the naked eye, most people rely on knowledge based on experience about the state of the hive.Therefore, interest is focused on smart beekeeping incorporating IoT technology. In particular, with regard to swarming, which is one of the most important parts of beekeeping, we know empirically that the swarming time can be determined by the sound of the queen bee, but there is no way to systematically analyze this with data.You may think that it can be done by simply recording the sound of the queen bee and analyzing it, but it does not solve various problems such as various noise issues around the hive and the inability to continuously record.In this study, we developed a system that records queen bee sounds in a real-time cloud system and analyzes sound patterns.After receiving real-time analog sound from the hive through multiple channels and converting it to digital, a sound pattern that was continuously output in the queen bee sound frequency band was discovered. By accessing the cloud system, you can monitor sounds around the hive, temperature/humidity inside the hive, weight, and internal movement data.The system developed in this study made it possible to analyze the sound patterns of the queen bee and learn about the situation inside the hive. Through this, it will be possible to predict the swarming period of bees or provide information to control the swarming period.

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Personal Information Overload and User Resistance in the Big Data Age (빅데이터 시대의 개인정보 과잉이 사용자 저항에 미치는 영향)

  • Lee, Hwansoo;Lim, Dongwon;Zo, Hangjung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.125-139
    • /
    • 2013
  • Big data refers to the data that cannot be processes with conventional contemporary data technologies. As smart devices and social network services produces vast amount of data, big data attracts much attention from researchers. There are strong demands form governments and industries for bib data as it can create new values by drawing business insights from data. Since various new technologies to process big data introduced, academic communities also show much interest to the big data domain. A notable advance related to the big data technology has been in various fields. Big data technology makes it possible to access, collect, and save individual's personal data. These technologies enable the analysis of huge amounts of data with lower cost and less time, which is impossible to achieve with traditional methods. It even detects personal information that people do not want to open. Therefore, people using information technology such as the Internet or online services have some level of privacy concerns, and such feelings can hinder continued use of information systems. For example, SNS offers various benefits, but users are sometimes highly exposed to privacy intrusions because they write too much personal information on it. Even though users post their personal information on the Internet by themselves, the data sometimes is not under control of the users. Once the private data is posed on the Internet, it can be transferred to anywhere by a few clicks, and can be abused to create fake identity. In this way, privacy intrusion happens. This study aims to investigate how perceived personal information overload in SNS affects user's risk perception and information privacy concerns. Also, it examines the relationship between the concerns and user resistance behavior. A survey approach and structural equation modeling method are employed for data collection and analysis. This study contributes meaningful insights for academic researchers and policy makers who are planning to develop guidelines for privacy protection. The study shows that information overload on the social network services can bring the significant increase of users' perceived level of privacy risks. In turn, the perceived privacy risks leads to the increased level of privacy concerns. IF privacy concerns increase, it can affect users to from a negative or resistant attitude toward system use. The resistance attitude may lead users to discontinue the use of social network services. Furthermore, information overload is mediated by perceived risks to affect privacy concerns rather than has direct influence on perceived risk. It implies that resistance to the system use can be diminished by reducing perceived risks of users. Given that users' resistant behavior become salient when they have high privacy concerns, the measures to alleviate users' privacy concerns should be conceived. This study makes academic contribution of integrating traditional information overload theory and user resistance theory to investigate perceived privacy concerns in current IS contexts. There is little big data research which examined the technology with empirical and behavioral approach, as the research topic has just emerged. It also makes practical contributions. Information overload connects to the increased level of perceived privacy risks, and discontinued use of the information system. To keep users from departing the system, organizations should develop a system in which private data is controlled and managed with ease. This study suggests that actions to lower the level of perceived risks and privacy concerns should be taken for information systems continuance.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Characterization of a new commercial strain 'Guseol' by intra-specific hyphal anastomosis in Pleurotus ostreatus (계통간 교잡에 의한 느타리 품종 '구슬'의 육성 및 그 특성)

  • Yoo, Young-Bok;Kim, Eun-Jung;Kong, Won-Sik;Jang, Kab-Yeul;Shin, Pyung-Gyun
    • Journal of Mushroom
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2012
  • To develop new variety of oyster mushroom, 63 intra-specific hybrids between the strain Suhan and #Nongi201 were developed using hyphal anastomosis technique in 2004. The Po2008-275 hybrid between the dikaryon strain 04-154(Suhan x #Nongi201) and the monokaryon strain derived from ASI2487 were developed using hyphal anastomosis in 2008. The Po2008-275 was shown the best cultural characteristics, selected to be a new variety and named as 'Guseol'. The new commercial strain, 'Guseol' had dark grey pilei and grows well under spring and autumn conditions in Korea. The fruiting bodies of 'Guseol' were of an excellent quality in that not only the stipe was thick and long but also the pileus was small and hard. The optimum temperatures for mycelial growth and fruiting body development were $25{\sim}30^{\circ}C$ and $10{\sim}16^{\circ}C$, respectively. Time period required for the initiation of the first fruiting body was about 3 to 5 days depending on the temperatures. The shape of fruiting body was thin funnel shape. Fruiting body production per box($43{\times}43{\times}12cm$) was about $1545{\pm}400.9g$ which was almost 137% quantity compared to that of parental strain 04-154. Relatively low temperature incubation ($11^{\circ}C$) resulted in the development of better quality of 'Guseol' mushrooms. When two different media including potato dextrose medium and mushroom complete medium were compared, the mycelial growth of this mushroom were much faster in mushroom complete medium. Similar results were observed with other variety '#Chunchu2'. Analysis of the genetic characteristics of the new commercial strain 'Guseol' showed a major DNA profile as that of the parental 04-154 when primer URP 1, primer URP 2 and primer URP 5 were used, but different to '#Chunchu2' that was used as a control. This new variety of the dark grey oyster mushroom had smart and high quality image that corresponds well to "health food". We therefore expect that this new strain will satisfy the consumers demand for variety and excellent mushrooms.

Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities (영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석)

  • LEE, Jeong-Min;HAM, Geon-Woo;BAE, Kyoung-Ho;PARK, Hong-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.82-98
    • /
    • 2019
  • The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.

Exhibition Hall Lighting Design that Fulfill High CRI Based on Natural Light Characteristics - Focusing on CRI Ra, R9, R12 (자연광 특성 기반 고연색성 실현 전시관 조명 설계 - CRI Ra, R9, R12를 중심으로)

  • Ji-Young Lee;Seung-Teak Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.65-72
    • /
    • 2024
  • To faithfully represent the intention of the work in the exhibition space, lighting that provides high color reproduction like natural light is required. Thus, many lighting technologies have been introduced to improve CRI, but most of them only evaluated the general color rendering index (CRI Ra), which considers eight pastel colors. Natural light provides excellent color rendering performance for all colors, including red and blue, expressed by color rendering index of R9 and R12, but most artificial lighting has the problem that color rendering performance such as R9 and R12 is significantly lower than that of natural light. Recently, lighting technology that provides CRI at the level of natural light is required to realistically express the colors of works including primary colors but related research is very insufficient. Therefore this paper proposes exhibition hall lighting that fulfills CRI with a focus on CRI Ra, R9, and R12 based on the characteristics of natural light. First reinforcement wavelength bands for improving R9 and R12 are selected through analysis of the actual measurement SPD of natural and artificial lighting. Afterward virtual SPDs with a peak wavelength within the reinforcement wavelength band are created and then SPD combination conditions that satisfy CRI Ra≥95, R9, and R12≥90 are derived through combination simulation with a commercial LED light source. Through this, after specifying two types of light sources with 405,630nm peak wavelength that had the greatest impact on the improvement of R9 and R12, the exhibition hall lighting applied with two W/C White LEDs is designed and a control Index DB of the lighting is constructed. Afterward experiments with the proposed method showed that it was possible to achieve high CRI at the level of natural light with average CRI Ra 96.5, R9 96.2, and R12 94.0 under the conditions of illuminance (300-1,000 Lux) and color temperature (3,000-5,000K).