• Title/Summary/Keyword: smart control and analysis

Search Result 711, Processing Time 0.037 seconds

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

Customer Satisfaction Analysis of Smart Car Features Using the Kano Model: in Control Effect of the Comprehension or Experience of Emerging Technologies (Kano모형을 기반으로 한 스마트 카 기능의 고객 만족도 분석: 신기술 사용경험 유무의 조절효과 중심으로)

  • Kang, Young Tai;Chung, Kyu Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.4
    • /
    • pp.155-168
    • /
    • 2018
  • This study singled out 30 smart car features and surveyed 250 respondents. Assuming that the relationship between fulfillment of a feature or a customer need and the satisfaction with that feature is not necessarily linear, this study was conducted using Kano's method. Two devices, Timko Deviation(TD) and Kano Distribution Index(KDI), were devised to help evaluate resulting Kano table quantitatively. Previous research based on Kano's original framework showed the limit to the analysis of new or unfamiliar features: more than 85% of the features surveyed turned out to be either Attractive or Indifferent attributes. This study attempted a new empirical approach by applying customer experiences, price conditions, and customer self-stated importance. The results showed that customer experience of the surveyed features affected the overall satisfaction level, signifying that Kano's method should be conducted with care when analyzing emerging technologies such as smart cars. It is expected that this study would be utilized for better understanding of the perception and trends of customers regarding new technologies. This study also suggests a new approach to the analysis of customer requirements by providing price conditions.

Does Happiness Always Lead to Reliance on Feelings in Decision Making?

  • Moon-Yong Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.370-377
    • /
    • 2023
  • Previous research has demonstrated that happy moods are known to promote feeling-based processing, whereas sad moods promote reason-based processing. The current research investigates a boundary condition for the effects of a happy mood on feeling-based decision making. This research proposes that the level of control (low vs. high) one exercises in a happy situation can promote a greater reliance on feelings (vs. reasons) in making judgments and decisions. Specifically, we hypothesize that (1) a happy individual in a situation where control level is low (vs. high) will be more likely to choose a cognitively (vs. affectively) superior option (hypothesis 1), and (2) a happy individual in a situation where control level is low (vs. high) will exert reason- (vs. feeling-) based processing (hypothesis 2). Consistent with the hypothesis 1, the results of two experiments show that happy individuals are more likely to choose cognitively versus affectively superior options in a situation where control level is low (vs. high). Moreover, the mediation analysis confirms that happy individuals are more likely to rely on cognitive, reason-based decision making when their control level is low, which supports the hypothesis 2.

Secure and Fine-grained Electricity Consumption Aggregation Scheme for Smart Grid

  • Shen, Gang;Su, Yixin;Zhang, Danhong;Zhang, Huajun;Xiong, Binyu;Zhang, Mingwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1553-1571
    • /
    • 2018
  • Currently, many of schemes for smart grid data aggregation are based on a one-level gateway (GW) topology. Since the data aggregation granularity in this topology is too single, the control center (CC) is unable to obtain more fine-grained data aggregation results for better monitoring smart grid. To improve this issue, Shen et al. propose an efficient privacy-preserving cube-data aggregation scheme in which the system model consists of two-level GW. However, a risk exists in their scheme that attacker could forge the signature by using leaked signing keys. In this paper, we propose a secure and fine-grained electricity consumption aggregation scheme for smart grid, which employs the homomorphic encryption to implement privacy-preserving aggregation of users' electricity consumption in the two-level GW smart grid. In our scheme, CC can achieve a flexible electricity regulation by obtaining data aggregation results of various granularities. In addition, our scheme uses the forward-secure signature with backward-secure detection (FSBD) technique to ensure the forward-backward secrecy of the signing keys. Security analysis and experimental results demonstrate that the proposed scheme can achieve forward-backward security of user's electricity consumption signature. Compared with related schemes, our scheme is more secure and efficient.

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang;Shi, Wei;Xing, Lanchang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.141-155
    • /
    • 2019
  • This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Design and Load Map of the Next Generation Convergence Security Framework for Advanced Persistent Threat Attacks

  • Lee, Moongoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.65-73
    • /
    • 2014
  • An overall responding security-centered framework is necessary required for infringement accidents, failures, and cyber threats. On the other hand, the correspondence structures of existing administrative, technical, physical security have weakness in a system responding to complex attacks because each step is performed independently. This study will recognize all internal and external users as a potentially threatening element. To perform connectivity analysis regarding an action, an intelligent convergence security framework and road map is suggested. A suggested convergence security framework was constructed to be independent of an automatic framework, such as the conventional single solution for the priority defense system of APT of the latest attack type, which makes continuous reputational attacks to achieve its goals. This study suggested the next generation convergence security framework to have preemptive responses, possibly against an APT attack, consisting of the following five hierarchical layers: domain security, domain connection, action visibility, action control, and convergence correspondence. In the domain, the connection layer suggests a security instruction and direction in the domains of administrative, physical and technical security. The domain security layer has consistency of status information among the security domain. A visibility layer of an intelligent attack action consists of data gathering, comparison and decision cycle. The action control layer is a layer that controls the visibility action. Finally, the convergence corresponding layer suggests a corresponding system of before and after an APT attack. The administrative security domain had a security design based on organization, rule, process, and paper information. The physical security domain is designed to separate into a control layer and facility according to the threats of the control impossible and control possible. Each domain action executes visible and control steps, and is designed to have flexibility regarding security environmental changes. In this study, the framework to address an APT attack and load map will be used as an infrastructure corresponding to the next generation security.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Analysis of the utility of intelligent speakers in the Internet of Things environment (사물인터넷 환경에서 지능형 스피커의 활용성 분석)

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • Smart home in the Internet of Things (IoT) environment aims to provide an optimal living environment for users by connecting all devices in the home. In such a smart home environment, artificial intelligence speakers are being used as a way to manage and control all devices. The existing speaker function is changing from simple music playback to the role of an interface that controls and manages all devices in the smart home space. This study dealt with the market status and usability analysis in the US and Korea, the leader in artificial intelligence speakers. The main target companies were Amazon, Google, and Apple in the US, as well as Kakao, SKT, and KT in Korea. In addition, based on the reaction results of domestic users to artificial intelligence speakers, the derivation of major problems and directions for improvement were described.

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF