• Title/Summary/Keyword: smart concrete plate

Search Result 11, Processing Time 0.019 seconds

Vibration response of smart concrete plate based on numerical methods

  • Taherifar, Reza;Chinaei, Farhad;Faramoushjan, Shahram Ghaedi;Esfahani, Mohammad Hossein Nasr;Esfahani, Shabnam Nasr;Mahmoudi, Maryam
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.387-392
    • /
    • 2019
  • This research deals with the vibration analysis of embedded smart concrete plate reinforced by zinc oxide (ZnO). The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT). The differential quadrature (DQ) method is applied for calculating frequency of structure. The effects of different parameters such as volume percent of ZnO, boundary conditions and geometrical parameters on the frequency of system are shown. The results are compared with other published works in the literature. Results indicate that the ZnO have an important role in frequency of structure.

Experimental and numerical study on pre-cambered deep deck-plate system

  • Seung-Ho, Choi;Inwook, Heo;Khaliunaa, Darkhanbat;Sung-Mo, Choi;Kang Su, Kim
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • A pre-cambered deep deck-plate system has been developed that can realize a long span by offsetting the deflection caused by a construction load. In this study, finite element (FE) analysis is performed to examine the preload-camber relationship introduced into a deck and calculate the deflection reflecting the ponding effect that arises during concrete pouring. The FE analysis results showed that the stress of the bottom plate was half of the yield stress when the pre-camber of approximately 30 mm was introduced. Based on the FE results, a full-scale deep deck-plate is fabricated, a pre-camber is introduced, and concrete is poured to measure deflection. A deflection calculation formula that reflects the ponding effect is proposed, and the deflections yielded by the proposed model, experimental results, and FE results are compared. Results show that the proposed model can accurately estimate the deflection of non-supported deep deck-plate systems after concrete is poured.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Enhanced impact echo frequency peak by time domain summation of signals with different source receiver spacing

  • Ryden, Nils
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The Impact Echo method can be used to measure the thickness of concrete plate like structures. Measurements are based on the identification of a clear thickness resonance frequency which can be difficult in very thick or highly attenuative plates. In this study the detectability of the measured resonant frequency is enhanced by time domain summation of signals with different source receiver spacing. The proposed method is based on the spatial and temporal properties of the first higher symmetric zero group velocity Lamb mode (S1-ZGV) which are described in detail. No application dependent tuning or filtering is needed which makes the method robust and suitable for implementation in automatic IE thickness measurements. The proposed technique is exemplified with numerical data and field data from a thick concrete wall and a highly attenuative asphalt concrete layer.

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai;Yuanxue Liu;Guangjian Gao;Shuang Su
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.195-205
    • /
    • 2023
  • The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Camber Reconstruction for a Prefab PSC Girder Using Collocated Strain Measurements (병치된 변형률 계측치를 이용한 프리팹 PSC 거더 캠버 재구성)

  • Kim, Hyun Young;Ko, Do Hyeon;Park, Hyun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.151-162
    • /
    • 2022
  • Prefab members have attracted attention because they can be mass-produced in factories through smart construction technology. For prefab prestressed concrete girders, it is important to manage the shapes of the girders properly from production to the pre-installation stage for consistency with the prefab floor plate during the erection process. This paper presents a camber reconstruction method using collocated strain measurements from the top and bottom of the prefab girder. In particular, the camber reconstruction method is applied to measured strain data in which the time-dependent behavior of concrete is considered after the introduction of prestress. Through Monte Carlo numerical simulations, the statistical accuracy of the reconstructed camber for a limited number of sensors, measurement errors, and nonlinear time-dependent behaviors are analyzed and validated.

Non-contact surface wave testing of pavements: comparing a rolling microphone array with accelerometer measurements

  • Bjurstrom, Henrik;Ryden, Nils;Birgisson, Bjorn
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • Rayleigh wave velocity along a straight survey line on a concrete plate is measured in order to compare different non-destructive data acquisition techniques. Results from a rolling non-contact data acquisition system using air-coupled microphones are compared to conventional stationary accelerometer results. The results show a good match between the two acquisition techniques. Rolling measurements were found to provide a fast and reliable alternative to stationary system for stiffness determination. However, the non-contact approach is shown to be sensitive to unevenness of the measured surface. Measures to overcome this disadvantage are discussed and demonstrated using both forward and reverse rolling measurements.

Ad-hoc vibration monitoring system for a stress-ribbon footbridge: from design to operation

  • Iban, Norberto;Soria, Jose M.;Magdaleno, Alvaro;Casado, Carlos;Diaz, Ivan M.;Lorenzana, Antolin
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.13-25
    • /
    • 2018
  • Pedro $G{\acute{o}}mez$ Bosque footbridge is a slender and lightweight structure that creates a pedestrian link over the Pisuerga River, Valladolid, Spain. This footbridge is a singular stress ribbon structure with one span of 85 m consisting on a steel plate and precast concrete slabs laying on it. Rubber pavement and a railing made of stainless steel and glass complete the footbridge. Because of its lively dynamics, prone to oscillate, a simple and affordable structural health monitoring system was installed in order to continuously evaluate its structural serviceability and to estimate its modal parameters. Once certain problems (conditioning and 3D orientation of the triaxial accelerometers) are overcome, the monitoring system is validated by comparison with a general purpose laboratory portable analyzer. Representative data is presented, including acceleration magnitudes and modal estimates. The evolution of these parameters has been analysed over one-year time.