• 제목/요약/키워드: smart car

검색결과 286건 처리시간 0.026초

터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 (Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.419-432
    • /
    • 2019
  • 대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.

A* 알고리즘을 이용한 기관실 순찰로봇의 최단 경로 탐색에 관한 연구 (Study on the Shortest Path finding of Engine Room Patrol Robots Using the A* Algorithm)

  • 김선덕
    • 해양환경안전학회지
    • /
    • 제28권2호
    • /
    • pp.370-376
    • /
    • 2022
  • 기술의 발전으로 스마트 선박과 관련된 다양한 연구가 진행되고 있으며, 기관실을 무인으로 순찰할 수 있는 기관실 순찰 로봇도 이러한 연구 중의 하나이다. 순찰로봇은 인공지능을 통해 학습된 정보를 기반으로 기관실을 이동하며 기기 정상 유무 및 누수, 누유, 화재 등의 이상 유무를 파악한다. 기관실 순찰로봇에 관한 연구는 인공지능을 이용한 객체 검출에 관한 연구가 주로 진행되고 있으나, 순찰로봇의 이동 및 제어에 관한 연구는 부족한 상황이다. 이는 순찰로봇이 객체를 검출하더라도 검출한 객체까지 이동할 방법이 없다는 문제를 야기한다. 이에 본 논문에서는 기관실 이상상황 발생 시 빠르게 이상 유무를 파악할 수 있는 기동성을 확보하기 위해, A* 알고리즘을 적용하여 순찰로봇이 최단경로를 탐색할 수 있는지를 확인하였다. 라이다를 장착한 소형차를 이용하여 선박 기관실을 주행하며 데이터를 얻어, SLAM으로 매핑하여 지도를 만들었다. 매핑한 지도에서 순찰로봇의 출발 지점과 목표 지점을 설정하고, A* 알고리즘을 적용하여 출발 지점부터 목표 지점까지 최단 경로를 탐색하는지를 확인하였다. 시뮬레이션 결과 매핑된 지도에서 출발 지점부터 목표 지점까지의 장애물을 회피하며 최단 경로를 잘 탐색함을 확인 할 수 있었으며, 기관실 순찰로봇에 적용하면 선박안전에 도움이 될 것으로 사료된다.

LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템 (Important Facility Guard System Using Edge Computing for LiDAR)

  • 조은경;이은석;신병석
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.345-352
    • /
    • 2022
  • 최근의 LiDAR(Light Detection And Ranging) 센서는 실시간으로 주변에 있는 물체를 스캔하는 데 사용된다. LiDAR 센서를 이용하여 주변 환경을 스캔할 경우 감지되었던 사물들에 대한 변화를 감지하고 실시간으로 움직이는 물체를 인식할 수 있다. 센서들의 제작 비용이 낮아지면서 LiDAR는 중요시설의 경계, 스마트시티, 자율주행차 등 다양한 산업 분야에서 다양하게 활용되고 있다. 이러한 LiDAR 데이터는 실시간에 사물을 스캔하는 만큼 입력 데이터의 크기가 크다. 따라서 이러한 LiDAR를 활용하는 시스템에서는 이러한 대용량 데이터의 실시간 처리가 병목이 될 수 있어서 이러한 대용량 처리에 대한 대안이 필요하다. 본 논문에서는 엣지 컴퓨팅 서버를 이용하여 방대한 포인트 클라우드를 압축하여 빠르게 처리하는 엣지 컴퓨팅 기법을 제안한다. LiDAR 센서의 레이저의 반사 범위가 제한되어 있으므로 실시간으로 넓은 영역을 스캔하기 위해서는 여러 대의 라이다를 사용해야 한다. 따라서 실시간으로 물체를 감지하거나 인식하기 위해서는 여러 개의 LiDAR 센서에 대한 데이터를 한 번에 처리해야 한다. 에지 컴퓨터는 데이터 가속을 수행하기 위해 포인트 클라우드를 효율적으로 압축하고 모든 데이터를 메인 클라우드에서 실시간에 압축해제하여 사용할 수 있도록 설계되었다. 이를 통해 사용자는 시스템을 중앙에서 병목 없이 실시간에 LiDAR 센서들을 제어할 수 있다. 실험에 사용된 시스템은 이러한 엣지 컴퓨팅 서비스를 적용함으로써 기존 클라우드 기반 방식에서 문제였던 데이터 병목 현상을 효과적으로 해결하였다.

Cloud 및 IoT 시스템의 보안을 위한 소프트웨어 정의 경계기반의 접근제어시스템 개발 (Development of Software-Defined Perimeter-based Access Control System for Security of Cloud and IoT System)

  • 박승규
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.15-26
    • /
    • 2021
  • 최근 클라우드, 모바일, IoT의 도입이 활성화되면서 방화벽이나 NAC(Network Access Control) 등의 고정 경계(Fixed Perimeter) 기반의 기존 보안 솔루션들의 한계를 보완할 수 있는 기술 개발의 필요성이 커지고 있다. 이에 대응하여 새로운 기반 기술로써 최근 등장한 것이 SDP(Software Defined Perimeter) 이다. 이 기술은 기존 보안 기술들과 달리 보호 대상 자원(서버, IoT 게이트웨이 등)의 위치에 상관없이 보안 경계를 유연하게 설정(Gateway S/W를 설치)하여, 날로 다양화·고도화되고 있는 네트워크 기반 해킹 공격을 대부분 무력화할 수 있으며 특히, Cloud 및 IoT 분야에 적합한 보안 기술로 부각 되고 있다. 본 연구에서는 SDP와 해시 트리 기반의 대규모 데이터 고속 서명 기술을 결합하여 새로운 접근제어시스템을 제안하였다. 대규모 데이터 고속 서명 기술에 의한 프로세스 인증기능을 통해 엔드포인트에 침입한 미지의 멀웨어들의 위협을 사전에 차단하고, 주요 데이터의 백업, 복구과정에서 유저 레벨의 공격이 불가능한 커널 레벨의 보안 기술을 구현하였고 그 결과 SDP의 취약 부분인 엔드포인트 보안을 강화하였다. 제안된 시스템을 시제품으로 개발하고 공인시험기관의 테스트(TTA V&V Test)로 성능시험을 완료하였다. SDP 기반 접근제어 솔루션은 스마트 자동차 보안 등에서도 활용될 수 있는 향후 잠재력이 매우 높은 기술이다.

안드로이드 기반의 도로 밝기 측정 어플리케이션 구현 (A Road Luminance Measurement Application based on Android)

  • 최영환;김홍래;홍민
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.49-55
    • /
    • 2015
  • 최근 5년간의 주 야간별 교통사고 통계에 따르면 대부분의 자동차 교통사고는 주간보다 야간에 더 많이 발생했다. 교통사고는 다양한 원인으로 발생하게 되는데 그 중 중요한 요소는 조명 미설치 또는 조명 위치의 부적합으로 운전자의 시야 혼란을 야기하여 교통사고를 유발하게 된다. 본 논문은 부적절한 도로 조명 시설 위치와 미설치 구역을 파악하고 관련 정보들을 데이터베이스화 하였다. 이를 위해 운전자의 위치 정보, 주행 정보, 도로 밝기 정보를 스마트폰을 이용하여 실시간으로 데이터베이스 서버에 저장하는 도로 밝기 측정 어플리케이션을 설계 및 구현하였다. 본 어플리케이션은 안드로이드 NDK을 이용하여 Native C/C++ 환경에서 구현되었으며, 이에 따라 자바나 다른 언어로 작성된 어플리케이션 보다 연산속도를 향상시켰다. 도로 밝기를 측정하기 위하여 카메라 영상인 RGB 색 공간의 영상을 YCbCr 색 공간의 영상으로 변환하여 휘도를 측정한다. 이를 위해 먼저 차선을 검출하고 도로 밝기 검출 영역의 휘도 값을 계산하여 데이터베이스에 저장한다. 또한 스마트폰의 카메라를 이용하여 실시간으로 도로의 영상을 입력 받고 도로의 차선부분에 대한 관심영역을 지정하여 연산 속도를 향상시켰다. 관심영역의 영상은 Grayscale 영상으로 변환하고 Canny 에지 검출기를 사용하여 외곽선을 추출하고 Hough line transform을 적용하여 차선의 후보군을 선별한다. 선별된 후보 차선의 기울기를 계산하여 양쪽의 차선을 선정한다. 양쪽 차선이 검출되면 차선의 교차점으로부터 아래로 20픽셀의 높이를 가진 삼각형을 도로 밝기 측정범위로 설정한다. 삼각형 부분의 모든 픽셀에 대한 R, G, B값을 추출하여 Y값을 계산하고 픽셀 밝기 값의 평균을 0부터 100사이의 값으로 계산하여 검은색부터 초록색으로 도로의 밝기를 표현하였다. 계산된 60m 전방의 도로 밝기 값은 스마트폰의 GPS 센서를 통해 측정된 운전자의 주행 정보와 위치 정보를 획득하여 10분 간격으로 무선통신을 통해 데이터베이스 서버에 저장하였다. 향후 수집된 도로 밝기 정보들은 스마트폰 어플리케이션이나 차량 내비게이션을 통해 운전자들에게 조심 운전을 경고하거나 효율적인 도로 조명 관리를 위한 개보수 계획에 반영될 수 있을 것으로 기대된다.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.