• 제목/요약/키워드: smart beam

검색결과 440건 처리시간 0.02초

Study on Changes in Shape of Denatured Area in Skull-mimicking Materials Using Focused Ultrasound Sonication

  • Min, JeongHwa;Kim, JuYoung;Jung, HyunDu;Kim, JaeYoung;Noh, SiCheol;Choi, HeungHo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권1호
    • /
    • pp.28-34
    • /
    • 2014
  • Recently, ultrasound therapy has become a new and effective treatment for many brain diseases. Therefore, skull-mimicking phantoms have been developed to simulate the skull and brain tissue of a human and allow further research into ultrasound therapy. In this study, the suitability of various skull-mimicking materials(HDPE, POM C, Acrylic) for studies of brain-tumor treatments was evaluated using focused ultrasound. The acoustic properties of three synthetic resins were measured. The skull-mimicking materials were then combined with an egg white phantom to observe the differences in the ultrasound beam distortion according to the type of material. High-intensity polyethylene was found to be suitable as a skull-mimicking phantom because it had acoustic properties and a denatured-area shape that was close to those of the skull,. In this study, a skull-mimicking phantom with a multi-layer structure was produced after evaluating several skull-mimicking materials. This made it possible to predict the denaturation in a skull in relation to focused ultrasound. The development of a therapeutic protocol for a range of brain diseases will be useful in the future.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Metal Oxide Nanocolumns for Extremely Sensitive Gas Sensors

  • Song, Young Geun;Shim, Young-Seok;Han, Soo Deok;Lee, Hae Ryong;Ju, Byeong-Kwon;Kang, Chong Yun
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.184-188
    • /
    • 2016
  • Highly ordered $SnO_2$ and NiO nanocolumns have been successfully achieved by glancing-angle deposition (GLAD) using an electron beam evaporator. Nanocolumnar $SnO_2$ and NiO sensors exhibited high performance owing to the porous nanostructural effect with the formation of a double Schottky junction and high surface-to-volume ratios. When all gas sensors were exposed to various gases such as $C_2H_5OH$, $C_6H_6$, and $CH_3COCH_3$, the response of the highly ordered $SnO_2$ nanocolumn were over 50 times higher than that of the $SnO_2$ thin film. This work will bring broad interest and create a strong impact in many different fields owing to its particularly simple and reliable fabrication process.

다중입출력 확률계의 지능재료를 이용한 제어에대한 실험적연구 (An Experimental Study on the Control of Stochastic Dynamic MIMO System using the Smart material)

  • 조경래;김용관;오수영;허훈;박상태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1292-1297
    • /
    • 2000
  • 외부로부터 불규칙 교란을 받는 동력학계에 대해 '허-확률 제어기법'을 이용하여 설계된 제어기의 성능을 수치모사를 통하여 검증하였다. 압전소자를 알루미늄 보에 부착하여 다중입출력의 복합재료보로 만들고, 기반에 불규칙한 외부교란을 받는계에 대한 모델링을 수행하였으며, Ito의 확률미분방정식과 F-P-K방정식을 이용하여 동적 모멘트 방정식을 유도하여 시스템의 확률영역에서의 특성을 알아보았다. 본 연구에서 제어기의 목표는 외부교란의 입력에 의해 발생하는 시스템의 모멘트 응답크기를 줄이는 방향으로 전개하였고, 확률영역에서의 MIMO PI제어기('허-확률 MIMO PI 제어기')를 설계하여 시간영역에서의 응답형태를 관찰하였다.

  • PDF

Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes

  • Poon, C.W.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.423-437
    • /
    • 2007
  • The empirical mode decomposition (EMD) method is well-known for its ability to decompose a multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF components carefully prior to any further processing and interpretation. In this paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and the NNM method provides a possible means for obtaining nonlinear properties in a structure.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Numerical analysis of tilted angle shear connectors in steel-concrete composite systems

  • Khorramian, Koosha;Maleki, Shervin;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.67-85
    • /
    • 2017
  • This study investigates numerically the behavior of tilted angle shear connectors embedded in solid concrete slabs. Two different tilted angle connectors were used, titled angle with 112.5 and 135 degrees between the angle leg and steel beam flange. A nonlinear finite element model was developed to simulate and validate the experimental push-out tests. Parametric studies were performed to investigate the variations in concrete strength and connector's dimensions. The results indicate that the ultimate strength of a tilted angle shear connector is directly related to the square root of the concrete compressive strength. The effects of variations in the geometry of tilted angle connectors on the shear capacity are discussed in details. Based on the numerical analyses, two equations are proposed to estimate the ultimate capacity of tilted angle shear connectors of 112.5 and 135 degrees in the defined range of parameters.

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.