• Title/Summary/Keyword: smart barns

Search Result 6, Processing Time 0.019 seconds

Multi-Cattle tracking with appearance and motion models in closed barns using deep learning

  • Han, Shujie;Fuentes, Alvaro;Yoon, Sook;Park, Jongbin;Park, Dong Sun
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.84-92
    • /
    • 2022
  • Precision livestock monitoring promises greater management efficiency for farmers and higher welfare standards for animals. Recent studies on video-based animal activity recognition and tracking have shown promising solutions for understanding animal behavior. To achieve that, surveillance cameras are installed diagonally above the barn in a typical cattle farm setup to monitor animals constantly. Under these circumstances, tracking individuals requires addressing challenges such as occlusion and visual appearance, which are the main reasons for track breakage and increased misidentification of animals. This paper presents a framework for multi-cattle tracking in closed barns with appearance and motion models. To overcome the above challenges, we modify the DeepSORT algorithm to achieve higher tracking accuracy by three contributions. First, we reduce the weight of appearance information. Second, we use an Ensemble Kalman Filter to predict the random motion information of cattle. Third, we propose a supplementary matching algorithm that compares the absolute cattle position in the barn to reassign lost tracks. The main idea of the matching algorithm assumes that the number of cattle is fixed in the barn, so the edge of the barn is where new trajectories are most likely to emerge. Experimental results are performed on our dataset collected on two cattle farms. Our algorithm achieves 70.37%, 77.39%, and 81.74% performance on HOTA, AssA, and IDF1, representing an improvement of 1.53%, 4.17%, and 0.96%, respectively, compared to the original method.

Research on Ways to Apply Smart Livestock Farming Based on Metaverse (메타버스 기반의 축사 스마트팜 적용 방안 연구)

  • YeonJae Oh
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.136-144
    • /
    • 2024
  • In recent years, with the rapid development of IT technology and the aging of the population, various solutions to the labor shortage have emerged. In the livestock industry, there are an increasing number of management systems that utilize artificial intelligence technology. The Metaverse Smart Farm is a system that combines the digital virtual world with advanced agricultural technology. With this system, farmers can monitor the health of their animals in real time without having to visit the barns, and analyze the data collected through sensors and cameras for more efficient agricultural management. In addition, the barn environment can be adjusted through a remote control function, which is expected to reduce labor and revitalize the livestock industry.

Visible Light and Infrared Thermal Image Registration Method Using Homography Transformation (호모그래피 변환을 이용한 가시광 및 적외선 열화상 영상 정합)

  • Lee, Sang-Hyeop;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.707-713
    • /
    • 2021
  • Symptoms of foot-and-mouth disease include fever and drooling a lot around the hoof, blisters in the mouth, poor appetite, blisters around the hoof, and blisters around the hoof. Research is underway on smart barns that remotely manage these symptoms through cameras. Visible light cameras can measure the condition of livestock such as blisters, but cannot measure body temperature. On the other hand, infrared thermal imaging cameras can measure body temperature, but it is difficult to measure the condition of livestock. In this paper, we propose an object detection system using deep learning-based livestock detection using visible and infrared thermal imaging composite camera modules for preemptive response

Journal of Knowledge Information Technology and Systems (스마트축사 활용 가상센서 기술 설계 및 구현)

  • Hyun Jun Kim;Park Man Bok;Meong Hun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.55-62
    • /
    • 2023
  • Innovation and change are occurring rapidly in the agriculture and livestock industry, and new technologies such as smart bams are being introduced, and data that can be used to control equipment is being collected by utilizing various sensors. However, there are various challenges in the operation of bams, and virtual sensor technology is needed to solve these challenges. In this paper, we define various data items and sensor data types used in livestock farms, study cases that utilize virtual sensors in other fields, and implement and design a virtual sensor system for the final smart livestock farm. MBE and EVRMSE were used to evaluate the finalized system and analyze performance indicators. As a result of collecting and managing data using virtual sensors, there was no obvious difference in data values from physical sensors, showing satisfactory results. By utilizing the virtual sensor system in smart livestock farms, innovation and efficiency improvement can be expected in various areas such as livestock operation and livestock health status monitoring. This paper proposes an innovative method of data collection and management by utilizing virtual sensor technology in the field of smart livestock, and has obtained important results in verifying its performance. As a future research task, we would like to explore the connection of digital livestock using virtual sensors.

An Investigation of Emission of Particulate Matters and Ammonia in Comparison with Animal Activity in Swine Barns (양돈사 내 동물 활동도에 따른 암모니아 및 미세먼지 배출농도 특성 분석)

  • Park, Jinseon;Jeong, Hanna;Lee, Se Yeon;Choi, Lak Yeong;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.117-129
    • /
    • 2021
  • The movement of animals is one of the primary factors that influence the variation of livestock emissions. This study evaluated the relationship between animal activity and three major emissions, PM10, PM2.5, and ammonia gas, in weaning, growing, and fattening pig houses through continuous monitoring of the animal activity. The movement score of animals was quantified by the developed image analysis algorithm using 10-second video clips taken in the pig houses. The calculated movement scores were validated by comparison with six activity levels graded by an expert group. A comparison between PMs measurement and the movement scores demonstrated that an increase of the PMs concentrations was obviously followed by increased movement scores, for example, when feeding started. The PM10 concentrations were more affected by the animal activity compared to the PM2.5 concentrations, which were related to the inflow of external PM2.5 due to ventilation. The PM10 concentrations in the fattening house were 1.3 times higher than those in the weaning house because of the size of pigs while weaning pigs were more active and moved frequently compared to fattening pigs showing 2.45 times higher movement scores. The results also indicated that indoor ammonia concentration was not significantly influenced by animal activity. This study is significant in the sense that it could provide realistic emission factors of pig farms considering animal's daily activity levels if further monitoring is carried out continuously.

Estimation of Particulate Matter and Ammonia Emission Factors for Mechanically-Ventilated Pig Houses (강제환기식 양돈시설의 암모니아 및 미세먼지 배출계수 산정)

  • Park, Jinseon;Jeong, Hanna;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.33-42
    • /
    • 2020
  • Emission factors for ammonia and particulate matters (PMs) from livestock buildings are of increasing importance in view of the environmental protection. While the existing emission factors were determined based on the emission inventory of other countries, in situ measurement of emission factors is required to construct an accurate emission inventory for Korea. This study is to report measurements of ammonia and PMs emissions from mechanically-ventilated pig houses, which are common types of pig barns in Korea. Ventilation rates and concentrations of ammonia and PMs were measured at the ventilation outlets of a weaner unit, a growing pig unit and a fattening pig unit to calculated the emission factors. The PMs emission was characterized with different aerodynamic diameters (PM2.5, PM10, and total suspended particulates (TSP)). The measured ammonia emission factors for weaners, growing pigs and fattening pigs were 0.225, 0.869 and 1.679 kg animal-1 yr-1, respectively, showing linear increase with pigs' age. The PMs emission factors for three growing stages were 0.023, 0.237 and 0.241 kg animal-1 yr-1, respectively for TSP, 0.017, 0.072 and 0.223 kg animal-1 yr-1, respectively for PM10, and 0.011, 0.016 and 0.151 kg animal-1 yr-1, respectively for PM2.5. PMs emissions were increased with pigs' age due to increasing feed supply and animal movement. The measured emission factors were smaller than those of the existing emission inventory indicating that the existing ones overestimate the emissions from pig buildings and also suggesting that long-term in situ monitoring at various livestock buildings is required to construct the accurate emission inventory.