• Title/Summary/Keyword: smart aircraft structures

Search Result 27, Processing Time 0.022 seconds

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

A critical comparison of reflectometry methods for location of wiring faults

  • Furse, Cynthia;Chung, You Chung;Lo, Chet;Pendayala, Praveen
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.25-46
    • /
    • 2006
  • Aging wiring in buildings, aircraft and transportation systems, consumer products, industrial machinery, etc. is among the most significant potential causes of catastrophic failure and maintenance cost in these structures. Smart wire health monitoring can therefore have a substantial impact on the overall health monitoring of the system. Reflectometry is commonly used for locating faults on wire and cables. This paper compares Time domain reflectometry (TDR), frequency domain reflectometry (FDR), mixed signal reflectometry (MSR), sequence time domain reflectometry (STDR), spread spectrum time domain reflectometry (SSTDR) and capacitance sensors in terms of their accuracy, convenience, cost, size, and ease of use. Advantages and limitations of each method are outlined and evaluated for several types of aircraft cables. The results in this paper can be extrapolated to other types of wire and cable systems.

Validation of a smart structural concept for wing-flap camber morphing

  • Pecora, Rosario;Amoroso, Francesco;Amendola, Gianluca;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.659-678
    • /
    • 2014
  • The study is aimed at investigating the feasibility of a high TRL solution for a wing flap segment characterized by morphable camber airfoil and properly tailored to be implemented on a real-scale regional transportation aircraft. On the base of specific aerodynamic requirements in terms of target airfoil shapes and related external loads, the structural layout of the device was preliminarily defined. Advanced FE analyses were then carried out in order to properly size the load-carrying structure and the embedded actuation system. A full scale limited span prototype was finally manufactured and tested to: ${\bullet}$ demonstrate the morphing capability of the conceived structural layout; ${\bullet}$ demonstrate the capability of the morphing structure to withstand static loads representative of the limit aerodynamic pressures expected in service; ${\bullet}$ characterize the dynamic behavior of the morphing structure through the identification of the most significant normal modes. Obtained results showed high correlation levels with respect to numerical expectations thus proving the compliance of the device with the design requirements as well as the goodness of modeling approaches implemented during the design phase.

Experimental studies on impact damage location in composite aerospace structures using genetic algorithms and neural networks

  • Mahzan, Shahruddin;Staszewski, Wieslaw J.;Worden, Keith
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.147-165
    • /
    • 2010
  • Impact damage detection in composite structures has gained a considerable interest in many engineering areas. The capability to detect damage at the early stages reduces any risk of catastrophic failure. This paper compares two advanced signal processing methods for impact location in composite aircraft structures. The first method is based on a modified triangulation procedure and Genetic Algorithms whereas the second technique applies Artificial Neural Networks. A series of impacts is performed experimentally on a composite aircraft wing-box structure instrumented with low-profile, bonded piezoceramic sensors. The strain data are used for learning in the Neural Network approach. The triangulation procedure utilises the same data to establish impact velocities for various angles of strain wave propagation. The study demonstrates that both approaches are capable of good impact location estimates in this complex structure.

Damage assessment of structures - an US air force office of scientific research structural mechanics perspective

  • Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.135-146
    • /
    • 2010
  • This paper presents the perspective of the Structural Mechanics program of the Air Force Office of Scientific Research (AFOSR) on the damage assessment of structures for the period 2006-2009 when the author was serving as Program Manager at AFOSR. It is found that damage assessment of structures plays a very important role in assuring the safety and operational readiness of US Air Force fleet. The current fleet has many aging aircraft, which poses a considerable challenge for the operators and maintainers. The nondestructive evaluation technology is rather mature and able to detect damage with considerable reliability during the periodic maintenance inspections. The emerging structural health monitoring methodology has great potential, because it will use on-board damage detection sensors and systems, will be able to offer on-demand structural health bulletins. Considerable fundamental and applied research is still needed to enable the development, implementation, and dissemination of structural health monitoring technology.

Ground Vibration Tests of SmartUAV Airframe Structure (스마트무인기 기체구조물 지상진동시험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Jung-Jin;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2010
  • This paper describes the test procedure, instrumentation, verification methodology and the results of the ground vibration test(GVT) and force vibration test(FVT) of the SmartUAV aircraft to estimate experimentally dynamic characteristics of the aircraft. Bungee cords are used to emulate free-free boundary conditions of the test aircraft. The SmartUAV is excited by three shakers and one-hundred frequency response functions(FRF's) is measured. The FRF's are reduced and analyzed to identify the dynamics parameters of the SmartUAV. To extract modal parameters of the SmartUAV such as, natural frequencies and damping ratios, the poly-reference least square complex exponential method is used in the time domain. The mode shape coefficients are estimated with the least squares frequency domain method to identify the vibration modes. The FVT was performed by fixed sine frequency with three shakers on the x, y and z direction and vibration characteristics of structures and detail equipments are measured.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.