• Title/Summary/Keyword: smart actuator

Search Result 318, Processing Time 0.026 seconds

Regularized model-free adaptive control of smart base-isolated buildings

  • Alvaro Javier Florez;Luis Felipe Giraldo;Mariantonieta Gutierrez Soto
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Smart base-isolated buildings rest on flexible pads known as base isolators that minimize the effect of external disturbances along with active/semi-active actuators. The strategies used to control these active components are typically based on system models that are known a priori. Although these models describe some of the most important dynamics of the elements involved in the system, the high degree of uncertainty in the behavior of a structure under external disturbances is very difficult to characterize using a fixed model. In this work, we propose a strategy that deals with this issue: the input that controls the actuator in the base isolation system results from the compound action of a controller that relies on a model of the system that is known a priori, and a control policy that is designed based on online data-driven inferences on the behavior of the system. In this way, the control design process incorporates both the prior information about the system and the unknowns of the system, such as non-modeled parameters and nonlinear behaviors in the building. We show through simulations the performance of the proposed method in an eight-story building subjected to seismic loading.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Development of automatic assembly module for yoke parts in auto-focusing actuator (Auto-Focusing 미세부품 Yoke 조립 자동화 모듈 개발)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Park, Kyu-Sub;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Smart-phone in the recently released high-end applied to the camera module is equipped with the most features auto focusing camera module. Also, auto focusing camera module is divided into voice coil motor, encoder, and piezo according to type of motion mechanism. Auto focusing camera module is composed of voice coil motor (VCM) as an actuator and leaf spring as a guide and suspension. VCM actuator is made of magnet, yoke as a metal, and coil as a copper wire. Recently, the assembly as yoke and magnet is made by human resources. These process has a long process time and it is difficult to secure quality. Also, These process is not economical in cost, and productivity is reduced. Therefore, an automatic assembly as yoke and magnet is needed in the present process. In this paper, we have developed an automatic assembly device that can automatically assemble yoke and magnet, and performed verifying performance. Therefore, by using the developed automatic assembly device, it is possible to increase the productivity and reduce the production cost.

When Sensor and Actuator Networks Cover the World

  • Stankovic, John A.
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.627-633
    • /
    • 2008
  • The technologies for wireless communication, sensing, and computation are each progressing at faster and faster rates. Notably, they are also being combined for an amazingly large multiplicative effect. It can be envisioned that the world will eventually be covered by networks of networks of smart sensors and actuators. This fact will give rise to revolutionary applications. However, to make this vision a reality, many research challenges must be overcome. This paper describes a representative set of new applications and identifies several key research challenges.

  • PDF

Linkage control system design combined MCU (MCU 통합 연동 제어시스템 설계)

  • Ha, T.J.;Park, J.M.;Cho, K.O.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • It is a superordinate concept to a network control system which optimally distributes the battery power to overall length parts through the linkage control drive and absorbs/integrates network diagnostics and overlapped functions with overall length control systems. This study is to develop a system that maximize the battery power and motor effectiveness by controlling motor battery controlling module with common MCU Integration linkage controlling system, and to develop S/W and H/W that can be controlled by linked with each controlling module in CAN method through using Autosar's standardized software.

  • PDF

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

The development of localization server system for location-awareness in smart home (지능형 홈에서 위치인지를 위한 localization server system 기술 개발)

  • Lim, Ho-Jung;Kang, Jeong-Hoon;Lee, Min-Goo;Yoo, June-Jae;Yoon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.606-608
    • /
    • 2005
  • In this paper, we introduce localization server system calculated real location of objects using raw data of location-awareness from sensor node gateway. The software architecture of localization server system consists of location calculation and actuator control based on location. Also, this system supports for collecting raw data, calculating location of real objects using raw data, correcting error from outer environment, and server for applications based on location.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Active Vibration Control of Slewing Smart Beam (회전지능보의 능동진동제어)

  • Nam, Sang-Hyun;Kwak, Moon-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.257-262
    • /
    • 2000
  • This research is concerned with the active vibration control of slewing smart structures subjected to rotating disturbance. When cantilever beam rotates about axes perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates after the slewing ends. In this paper, the analytical model for a single slewing flexible beam with surface bonded piezoelectric sensor and actuator is developed using the Hamilton's principle with discretization by the assumed mode method. The theoretial model is verified by the experimental open loop frequency response data. The controller is designed for residual vibration suppression after slewing. The designed cotroller is a positive position feedback (PPF) controller for controlling the first mode vibration.

  • PDF