• Title/Summary/Keyword: smart actuator

Search Result 318, Processing Time 0.027 seconds

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.433-447
    • /
    • 2011
  • The present paper addresses the nonlinear response of a FG square plate with two smart layers as a sensor and actuator under pressure. Geometric nonlinearity was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential was assumed as a quadratic function along the thickness direction and trigonometric function along the planar coordinate. By evaluating the mechanical and electrical energy, the total energy equation can be minimized with respect to amplitude of displacements and electrical potential. The effect of non homogenous index was investigated on the responses of the system. Obtained results indicate that with increasing the non homogenous index, the displacements and electric potential tend to an asymptotic value. Displacements and electric potential can be presented in terms of planar coordinate system. A linear analysis was employed and then the achieved results are compared with those results that are obtained using the nonlinear analysis. The effect of the geometric nonlinearity is investigated by using the comparison between the linear and nonlinear results. Displacement-load and potential-load curves verified the necessity of a nonlinear analysis rather than a linear analysis. Improvement of the previous results (by the linear analysis) through employing a nonlinear analysis can be presented as novelty of this study.

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

The implementation of remote IPMC control system using android smartphone (안드로이드 스마트폰 기반의 원격 IPMC 제어시스템 구현)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.533-539
    • /
    • 2013
  • Recently, Ionic Polymer Metal Composite (IPMC) systems receive great attention in the fields of the medical and biomedical Engineering because of several merits in terms of new actuators and sensors and fuel cell materials. When the voltage is excited to IPMC system, it moves. Conversely, if there are any movement on the IPMC, the IPMC has charge voltage by the internal properties. Therefore the IPMC can be used as a motion sensor or force sensor. In this paper, we identify characteristics of the IPMC and control its movements from remote locations by the smart-phone system based on visual information for monitoring. Additionally, control of movements of the IPMC is realized by transmit motion commands using the smart-phone system with the blue-tooth communication. Unfortunately, there are some deficiencies to perfectly attain physical properties of the IPMC systems from our experiments in this paper. However, in its utilization point of view, we demonstrate that the IPMC has some potentials as new sensors, actuators, and fuel cells.

Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper (셀룰로오스 EAPap 용 은잉크 제조 및 잉크젯 프린팅)

  • Mun, Seongcheol;Khondoker, Mohammad Abu Hasan;Kafy, Abdullahil;Mohiuddin, M.d.;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.737-742
    • /
    • 2014
  • This paper reports a customized silver ink and its inkjet printing process on a cellulose electro-active paper (EAPap). To synthesize a silver ink, silver nanoparticle is synthesized from silver nitrate, polyvinylpyrrolidone and ethylene glycol, followed by adding a viscosifier, hydroxyethyl-cellulose solution, and a surfactant, diethylene glycol. The silver ink is used in an inkjet printer (Fujifilm Dimatix DMP-2800 series) to print silver electrodes on cellulose EAPap. After printing, the electrodes are heat treated at $200^{\circ}C$. The sintered electrodes show that the thickness of the electrodes linearly increases as the number of printing layers increases. The electrical resistivity of the printed electrodes is $23.5{\mu}{\Omega}-cm$. This customized ink can be used in inkjet printer to print complex electrode patterns on cellulose EAPap to fabricate flexible smart actuators, flexible electronics and sensors.

Dynamic displacement tracking of a one-storey frame structure using patch actuator networks: Analytical plate solution and FE validation

  • Huber, Daniel;Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.613-632
    • /
    • 2009
  • The present paper is concerned with the design of a proper patch actuator network in order to track a desired displacement of the sidewalls of a one-storey frame structure; both, for the static and the dynamic case. Weights for each patch of the actuator network found in our previous work were based on beam theory; in the present paper a refinement of these weights by modeling the sidewalls of the frame structure as thin plates is presented. For the sake of calculating the refined weights approximate solutions of the plate equations are calculated by an extended Galerkin method. The solutions based on the analytical plate model are compared with three-dimensional Finite Element results computed in the commercially available code ANSYS. The patch actuator network is put into practice by means of four piezoelectric patches attached to each of the two sidewalls of the frame structures, to which electric voltages proportional to the analytically refined patch weights are applied. Analytical and numerical results coincide very well over a broad frequency range.

A Study on the Standard-interfaced Smart Farm Supporting Non-Standard Sensor and Actuator Nodes (비표준 센서 및 구동기 노드를 지원하는 표준사양 기반 스마트팜 연구)

  • Bang, Dae Wook
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.139-149
    • /
    • 2020
  • There are now many different commercial weather sensors suitable for smart farms, and various smart farm devices are being developed and distributed by companies participating in the government-led smart farm expansion project. However, most do not comply with standard specifications and are therefore limited to use in smart farms. This paper proposed the connecting structure of operating non-standard node devices in smart farms following standard specifications supporting smart greenhouse. This connecting structure was proposed as both a virtual node module method and a virtual node wrapper method. In addition, the SoftFarm2.0 system was experimentally operated to analyze the performance of the implementation of the two methods. SoftFarm2.0 system complies with the standard specifications and supports non-standard smart farm devices. According to the analysis results, both methods do not significantly affect performance in the operation of the smart farm. Therefore, it would be good to select and implement the method suitable for each non-standard smart farm device considering environmental constraints such as power, space, distance of communication between the gateway and the node of the smart farm, and software openness. This will greatly contribute to the spread of smart farms by maximizing deployment cost savings.

Position control fo a flexible gantry robot arm using smart actuators (스마트 작동기를 이용한 갠트리형 유연로봇팔의 위치제어)

  • 한상수;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1800-1803
    • /
    • 1997
  • This paper presents new feedback actuators to achieve an accurate position control of a flexible gnatry robot arm. the translational motion in the plane is generated by two d.c.motors and controlled by emplying elecor-rheological(ER) clutch acutators. The generated motion can be continuously controlled by controlling the intensity of lectric field imposed to the ER fluid domain which tunes the transmitted torque of the ER clutch. n the other hand, during control action of the translational motion a flexible arm attached to the moving mass produces undesirable oscillatins due to its inherent flexibility. The oscillations are actively suppressed by applying feedback voltages to piezoceramic acutators bonded on the surface of the flexible arm. The control electric fields to be applied to the ER clutch and the control voltage for the piezoceramic actuator are determined via the loop shaping esign procedures(LSDP) in the H.inf. control technique. Comsequently, an accuate positiion control at the end-point of the flexible am is achieved during planar motion.

  • PDF