• Title/Summary/Keyword: smart actuator

Search Result 318, Processing Time 0.024 seconds

Vibration Control of Hybrid Smart Structures (하이브리드 스마트 구조물의 진동 제어)

  • 박동원;박용군;박노준;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.130-135
    • /
    • 1996
  • This paper presents a proof-concept investigation on the active vibration control of two hybrid smart structures (HSSs). The first one is consisting of a piezoelectric film (PF) actuator and an electro-rheological fluid(ERF) actuator, and the other is featured by a piezoceramic (PZT) actuator and a shape memory alloy (SMA) actuator. For the PF/ERF hybrid smart structure, both the increment of the damping ratios and the suppression of the tip deflections are evaluated in order to demonstrate control effectiveness of the PF actuator and ERF actuator and the hybrid actuation. For the PZT/SMA hybrid smart structure, the PZT actuator takes account of the high frequency excitation, while the SMA actuator exerts large vibration control force. The experimental results exhibit superior abilities of the hybrid actuation systems to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  • PDF

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Smart Actuator-Control System Design Using Shape Memory Alloys (형상기억합금 응용 스마트 액추에이터-제어기 설계)

  • Kim, Youngshik;Jang, Tae-soo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • In this research we discuss an integrated actuator-control system for advanced control of a smart Shape Memory Alloy (SMA) actuator. Toward this goal, we designed and fabricated an actuator-control module combining two SMA actuating units with a single-chip microprocessor, two different sensing elements, and an actuator driver. In our proposed system, sensing elements include a 6-axis single-chip motion sensor for orientation measurement and a circuit for resistance measurement of SMA wires. We experimentally verified our proposed actuator-control system using actuator driving, sensor data readings, and communication tests.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.587-595
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC(macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1119-1124
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC (macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

Design of leaf spring with high fatigue life applied to horizontal linear vibrating actuator (수평 선형 진동 모터에 적용 가능한 높은 피로 수명을 가진 판 스프링 설계)

  • Lee, Ki-Bum;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5684-5688
    • /
    • 2012
  • This paper aims to design the leaf spring of high fatigue life which guides the moving part of the horizontal linear vibrating actuator. The vertical linear vibrating actuator has been used as the vibration device for haptic and alarm function on smart phone. However, the vibrating actuator has a major cause on the limitation to make smart phone slim because of its own characteristic of vertical direction vibration. The horizontally linear vibrating actuator for smart phone slimness has been developed in recent years. One of the most significant parts of horizontal vibrating linear actuator is the guide spring which supports moving part of actuator and enables actuator to vibrate elastically. Various types of leaf springs were designed and analyzed to get the required stiffness with high fatigue life through the stress analysis using commercial structural analysis program, ANSYS. The experiments were performed with prototypes to measure vibration acceleration and life time of leaf spring.

Active Control of Damaged Composite Structure Using MFC Actuator (MFC를 이용한 손상된 복합재의 능동제어)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.535-540
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.

  • PDF

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.