• 제목/요약/키워드: small-scale tissues

검색결과 17건 처리시간 0.029초

Sport impact on the strength of the nanoscale protein tissues under the thermal condition

  • Xin, Fang;Mengqian, Hou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.561-574
    • /
    • 2022
  • The stability of protein tissues and protein fibers in the human muscle is investigated in the presented paper. The protein fibers are modeled via tube structures embedded in others proteins fibers like the elastic substrate. Physical sport and physical exercise play an important role in the stability of synthesis and strength of the protein tissues. In physical exercise, the temperature of the body increases, and this temperature change impacts the stability of the protein tissues, which is the aim of the current study. The mathematical simulation of the protein tissues is done based on the mechanical sciences, and the protein fibers are modeled via wire structures according to the high-order theory beams. The thermal stress due to the conditions of the sport is applied to the nanoscale protein fibers, then the stability regarding the frequency analysis is investigated. Finally, the impact of temperature change, physical exercise, and small-scale parameters on the stability of the protein tissues are examined in detail.

Improved Procedure for Large-scale Isolation of Mitochondrial DNA from Mammalian Tissues

  • Hong, Sung-Soo;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.73-78
    • /
    • 1999
  • Although there are several methods for the preparation of mitochondrial DNA (mtDNA) from mammalian tissues, most are relatively long ultracentrifugation or manipulations by a small-scale method. We escribed a rapid method for large-scale extraction of mtDNA from human placental and horse liver tissues. The method is based on the preparation and homogenization of tissues, urification of crude mitochondria by differential centrifugations and isolation of mtDNA by alkaline Iysis. It was improved from Pre-existing methods by replacing some steps with simpler ones and discarding many others. This method gives a high yield of pure mtDNA(approximately 1-5mg from one placenta; ca. 400-600 g wet weight), depending on its sources (fresh tissue gave better results than frozen one). The resulting mtDNA indicated that this method can yield mtDNA in sufficient purity and quantity to identify the direct restriction analysis on agarose gel, random-primed labeling as a probe, and end labeling. Therefore, the method is ideal for obtaining good mtDNA samples to conduct routine restriction fragment length polymorphism (RFLP) analyses of natural populations for genetic studies.

  • PDF

Evaluating sulfoxaflor residues in pig tissues using animal modeling

  • Hyun-Woo, Cho;Kangmin, Seo;Jin Young, Jeong;Ju Lan, Chun;Ki Hyun, Kim
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.911-921
    • /
    • 2022
  • Maximum residue limits (MRL) for pesticides in feed have been set to protect public health and produce safe livestock products. In vivo experiments to establish MRL are essential, as livestock are commonly used to obtain reliable in vivo quantitative information. Here, we aimed to evaluate whether small laboratory animals can replace or reduce monogastric livestock in experiments to quantify pesticide residues in vivo after oral consumption through feed. First, 24 pigs and rats were randomly assigned to four groups and fed 0, 3, 9, or 30 mg/kg of sulfoxaflor. After four weeks, serum, muscle, fat, liver, kidney, and small intestine samples were collected, and sulfoxaflor residues were analyzed using liquid chromatography - tandem mass spectrometry. Sulfoxaflor residues in pig tissues were significantly correlated with those in rat tissues. Model equations were formulated based on the residual sulfoxaflor amount in pig and rat tissues. The calculated and measured sulfoxaflor residues in pigs and rats showed more than 90% similarity. Sulfoxaflor did not affect body weight gain, feed intake, or the feed conversion ratio. Therefore, we concluded that pesticide residue quantification in vivo to establish MRL could be performed using small laboratory animals instead of livestock animals. This would contribute to obtaining in vivo pesticide residue information and reducing large-scale livestock animal experiments.

Improvement of RT-PCR Sensitivity for Fruit Tree Viruses by Small-scale dsRNA Extraction and Sodium Sulfite

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.142-146
    • /
    • 2004
  • Woody plant tissues contain great amounts of phenolic compounds and polysaccharides. These substances inhibit the activation of reverse transcriptase and/or Taq polymerase in RT-PCR. The commonly used multiple-step protocols using several additives to diminish polyphenolic compounds during nucleic acid extraction are time consuming and laborious. In this study, sodium sulfite was evaluated as an additive for nucleic acid extraction from woody plants and the efficiency of RT-PCR assay of commercial nucleic acid extraction kits and small-scale dsRNA extraction was compared. Sodium sulfite was used as an inhibitor against polyphenolic oxidases and its effects were compared in RNA extraction by commercial extraction kit and small-scale double-stranded RNA (dsRNA) extraction method for RT-PCR. During nucleic acid extraction, addition of 0.5%-1.5%(w/v) of sodium sulfite to lysis buffer or STE buffer resulted in lighter browning by oxidation than extracts without sodium sulfite and improved the RT-PCR detection. When commercial RNA extraction kit was used, optimal concentrations of sodium sulfite were variable according to the tested plant. However, with dsRNA as RT-PCR template, sodium sulfite 1.5% in STE buffer improved the detection efficiency of Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) in fruit trees, and reduced the unspecific amplifications signi-ficantly. Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

Improved RNA extraction for fruit tree viruses in RT-PCR assay

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.139.1-139
    • /
    • 2003
  • Tissues from woody plant contain higher amount of phenolic compounds and polysaccharides, which give inhibitory effects on reverse transcriptase and/or Taq ploymerase. The common multiple-step protocols using several additives to inhibit polyphenoic compounds during nucleic acid extraction are time consuming and laborious. Sodium sulfite (Na$_2$SO$_3$) was used as inhibitor of polyphenolic oxidases in extraction buffer and compare it's effect between commercial RNA extraction kit and small-scale double-stranded RNA (dsRNA) extraction by RT-PCR. During nucleic acid extraction procedure, addition of 0.5%-1.5% (w/v) sodium sulfite to Iysis buffer or STE buffer resulted in lighter color change than extracts without sodium sulfite and improve the RT-PCR detection. When commercial RNA extraction kit used, optimal concentration of sodium sulfite were variable according to the host plant. However, using dsRNA as RT-PCR template, 1.5% sodium sulfite in STE buffer improves the detection of both viruses and unspecific amplifications were reduced significantly, Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

  • PDF

Stability analysis of drug delivery equipment in sports and exercise actions

  • Cuijuan Wang
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.165-177
    • /
    • 2023
  • Nanomotors are gaining popularity as novel drug delivery methods since they can move rapidly, penetrate deeply into tissues, and be regulated. The ability of manufactured nanomotors to swiftly transport therapeutic payloads to their intended location constitutes a revolutionary nanomedicine strategy. The nanomotors for the drug delivery purpose are released in the blood flow under the different physical conditions, so the stability investigation of these devices is essential before the production, especially in the sport and physical exercise conditions that the blood flow enhances. As a result, using dynamic analysis, this article investigates the stability of the nanomotor released in the blood flow when sport and physical activity circumstances increase blood flow. The considered nanodevice is made of a central motor, and nanotubes are used for the nanomotor blade, which is the drug capsule. Finally, the stability examination of nanomotor as the drug delivery equipment is discussed in detail, and the proposed results can present beneficial results in designing and producing small-scale intelligent devices.

식물의 초경량 조직을 이용한 미토콘드리아의 DNA와 RNA 정제 (Development of a Highly Efficient Isolation Protocol for Mitochondrial DNA and RNA Using Small Scale Plant Tissues)

  • 김경민;임용숙;신동일;설일환
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.240-244
    • /
    • 2006
  • 본 실험에서는 토마토의 종자를 기내 배양하여 얻어진 1g 이하의 무균 잎 조직을 이용하여 미토콘드리아를 분리 정제하여 MitoTracker를 이용하여 세포생물학적으로 확인하였고, 이들의 mt를 이용하여 미토콘드리아 DNA와 RNA를 추출과 검정을 하였다. 또한 고농도의 이온성을 이용하여 미토콘드리아와 mtDNA 및 mtRNA을 추출할 수 있었으며, 식물의 여러 종류에도 사용되어질 수 있을 것이다. mtDNA는 PCR 분석에 의하여 plastid DNA와 혼재되어 있지 않음을 확인하였다. mtRNA는 RT-PCR 분석을 통하여 plastid RNA와 흔재되어 있지 않음을 확인할 수 있었다.

냉동 시 잠재용융열에 의한 피해를 최소화할 수 있는 이상냉동 곡선 (Ideal Freezing Curve Can Avoid the Damage by Latent Heat of Fusion During Freezing)

  • 박한기;박영환;윤웅섭;김택수;윤치순;김시호;임상현;김종훈;곽영태
    • Journal of Chest Surgery
    • /
    • 제36권4호
    • /
    • pp.219-228
    • /
    • 2003
  • 배경: 액체질소에 의한 냉동방법은 생물학과 의학에서 세포와 조직의 장기보존으로는 성공적인 방법이다. 잘 조절된 냉동속도와 해동의 방법과 함께 글라이세롤이나 디메칠설폭사이드 같은 냉동보존제의 사용으로 얼음결정이 생기는 것을 방지하여 구조의 유지와 생존율을 모두 향상시킬 수 있으며 반영구적으로 보존할 수 있다. 여러 조직의 초저온냉동에는 조직에 맞는 냉동속도가 있다. 대상 및 방법: 가장 적합한 냉동곡선과 이를 위한 냉동챔버온도를 찾기 위해서 우리들은 조직의 열역학적 계산을 두 가지 방법으로 하였다. 하나는 직접계산방법으로 모든 냉동 대상물의 열물리학적 특성, 잠재용융열, 면적, 농도와 체적을 알아야 계산할 수 있다. 이러한 방법은 매우 복잡하고 어떠한 경우에는 실제 값을 알 수 없다. 다른 방법은 간접계산방법으로 우선 기존의 냉동곡선으로 조직을 냉동시켜 조직의 실제 냉동곡선을 얻은 다음 시간상수로 냉동곡선을 분석한 다음 온도반응을 계산하고 적합한 x차방정식을 대입시켜 냉동 시 온도상승을 막고 이것을 거꾸로 냉동챔버온도를 산출하는 방식이다. 결과: 이 냉동 프로그램을 중배엽줄기세포, 연골세포와 골아세포에 적용시켜 검사하였다. 조직의 온도는 온도상승과정 없이 이상적인 냉동곡선을 따라 감소하였다. 그러나 세포의 양과 수용액의 양이 적어 냉동곡선간의 생존력이 통계학적으로 차이가 있지는 않았다. 만약 더욱 부피가 큰 조직을 냉동시키거나 프로그램을 순차적으로 계속한다면 이상곡선에 더욱 근접하게 되어 차이가 있을 것으로 판단된다. 결론: 이 프로그램은 이상적인 냉동곡선으로 조직을 냉동시키기 위한 냉동챔버온도를 쉽게 찾을 수 있도록 도움이 될 것이다.