• Title/Summary/Keyword: small water system

Search Result 1,317, Processing Time 0.029 seconds

Antimutagenic Effect of Green-Yellow Vegetables toward Aflatoxin $B_1$, and 4-Nitroquinoline-1-oxide (아플라톡신 $B_1$과 4-NQO에 대한 녹황색 채소류의 항돌연변이 효과)

  • 이경임;박건영;이숙희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.143-148
    • /
    • 1992
  • The antimutagenic effects of green-yellow vegetables toward aflatoxin B$_1$(AFB$_1$) and 4-nitroquinoline-1-ox-ide (4-NQO) using the Ames assay system with Salmonella typhimurium TA98 and TA100 were studied. Forty six to fifty percent of the methanol extracts of the vegetable samples inhibited the mutagenicity induced by AFB$_1$in TA98 and TA100. Perilla leaf, lettuce, broccoli, crown daisy, water dropwort, small water dropwort, red pepper, red pepper leaves, amaranth, spinach and radish root were significantly reduced the mutagenicity of AFB$_1$(p< 0.01). Whereas 25 out of 27 samples (93%) exhibited antimutagenicity toward a direct mutagen of 4-NQO (p< 0.01. 0.05). The samples which showed the strong antimutagenicity (>60%) were cabbage, kale, lettuce, broccoli, mustard leaf, green red pepper, green sweet pepper, spinach, amaranth, soybean sprout and immature pumpkin. The juices from the several samples also showed antimu-tagenic activity toward AFB$_1$. Cabbage, perilla leaf, small water dropwort and spinach reduced TAT100 revertants dose dependently in the range of 50-500$m\ell$/plate, however, cucumber and carrot showed little effect.

  • PDF

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A (소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구)

  • Lee, Byungmoo;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

Studies on the Micelle Formation of Nonionic Surfactant(1) -1NMR Self-Diffusion and Proton Relaxation of Polyoxyethylene Alkyl Ether- (계면활성제 수용액의 미셀형성(제1보) - Polyoxyethylene Alkyl Ether의 자기확산과 프로톤 이완 -)

  • Choi, Seung-Ok;Jeong, Hwan-Kyeong;Lee, Jin-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.822-828
    • /
    • 1998
  • Binary system of water and polyoxyethylene dodecyl ether, $C_{12}H_{25}(OCH_2CH_2)nOH$, have been studied by $^1H$ NMR techniques. For n=5($C_{12}EO_5$) and n=8($C_{12}EO_8$), the self-diffusion coefficients of nonionic surfactants in the isotropic phase($L_1$) have been measured by using pulsed field gradient technique for a range of temperature and concentrations. In addition the line widths of the different proton signals have been monitored, and samples of some liquid crystalline characteristic were also studied. Dramatic Broadening of the methylene signals of the alkyl($C_{12}H_{25}$) chain is observed as the hexagonal liquid crystalline phase is approached in the $C_{12}EO_5-$water system, while only small broadening is observed in the $C_{12}EO_8-$water system. It was shown that there was a growth of $C_{12}EO_5$ micelles to rods with increasing concentrations, while the $C_{12}EO_8-$ micelles at low temperature remain small in the concentration range. The self-diffusion coefficients of the surfactants decrease rapidly with increasing concentration until a minimum is reached after which there is slow increase. The location of the minimum point occurs at lower concentrations the temperature is close to the cloud point, where the system separate into two isotropic phase. In the line width studies, broadening is found at a certain temperature interval when the concentration is increased in the $C_{12}EO_5$ system. The results indicate that the surfactant aggregates grow in size at the cloud point is approached. The aggregates seem to be flexible and probably not to be of a definite shape close to the cloud point. In the $C_{12}EO_8$ system, the micelles are much less affected by an increase in temperature and micellar growth can't be unambiguously established. The methylene signals of the ethylene oxide moieties consistantly show narrower $^1H$ signals, showing that in the aggregates they are less ordered than the chain methylenes. The various changes in aggregate size and shape are correlated with the stability ranges of the isotropic and liquid crystalline phases according to phase diagrams from the literature. Both aggregate size and phase structure are in qualitative agreement with concentration based on the effective shape of the molecules at different temperature and concentration.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Coastal Shallow-Water Bathymetry Survey through a Drone and Optical Remote Sensors (드론과 광학원격탐사 기법을 이용한 천해 수심측량)

  • Oh, Chan Young;Ahn, Kyungmo;Park, Jaeseong;Park, Sung Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.162-168
    • /
    • 2017
  • Shallow-water bathymetry survey has been conducted using high definition color images obtained at the altitude of 100 m above sea level using a drone. Shallow-water bathymetry data are one of the most important input data for the research of beach erosion problems. Especially, accurate bathymetry data within closure depth are critically important, because most of the interesting phenomena occur in the surf zone. However, it is extremely difficult to obtain accurate bathymetry data due to wave-induced currents and breaking waves in this region. Therefore, optical remote sensing technique using a small drone is considered to be attractive alternative. This paper presents the potential utilization of image processing algorithms using multi-variable linear regression applied to red, green, blue and grey band images for estimating shallow water depth using a drone with HD camera. Optical remote sensing analysis conducted at Wolpo beach showed promising results. Estimated water depths within 5 m showed correlation coefficient of 0.99 and maximum error of 0.2 m compared with water depth surveyed through manual as well as ship-board echo-sounder measurements.

Water temperature assessment on the small ecological stream under climate change (기후변화에 따른 소하천에서의 수온 모의연구)

  • Park, Jung Sool;Kim, Sam Eun;Kwak, Jaewon;Kim, Jungwook;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.313-323
    • /
    • 2016
  • Water temperature affects physical and biological processes in ecologies on river system and is important conditions for growth rate and spawning of fish species. The objective of this study is to compare models for water temperature during the summer season for the Fourchue River (St-Alexandre-de-Kamouraska, Quebec, Canada). For this, three different models, which are CEQUEAU, Auto-regressive Moving Average with eXogenous input and Nonlinear Autoregressive with eXogenous input, were applied and compared. Also, future water temperature in the Fourchue river were simulated and analyzed its result based on the CMIP5 climate models, RCP 2.6, 4.5, 8.5 climate change scenarios. As the result of the study, the water temperature in the Fourchue river are actually changed and median water temperature will increase $0.2{\sim}0.7^{\circ}C$ in June and could decrease by $0.2{\sim}1.1^{\circ}C$ in September. Also, the UILT ($24.9^{\circ}C$) for brook trout are also likely to occurred for several days.

Cooling Performance on the Small Diesel Engine (소형(小型)디젤기관(機關)의 냉각성능(冷却性能)에 관(關)한 연구(硏究))

  • Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 1990
  • This study was conducted to obtain basic data for the design of cooling system by the test of engine performance of the power tiller being used widely in the rural area. Among the various factors affecting engine performance, the flow rate of cooling water was considered as the major factor in this study. Motoring loss, output, fuel consumption ratio, torque, heat absorption of cooling water, and thermal efficiency were measured and analyzed based on three flow rates of cooling water such as 15, 20, and $25{\ell}/min$. The results obtained were as follows : 1. Motoring loss of the engine was 1.371 kW at 2,200 rpm., and mechanical efficiency was 79.1% at rated output level. 2. Output power of the engine increased with the flow rate of cooling water increased. 3. BSFC was 282.9g/kW-h at the flow rate of $20{\ell}/min$, and the temperature of cooling water at outlet was $80.9^{\circ}C$. 4. There was a little variation of torque of the engine depending on the flow rate of cooling water. 5. Absorption of heat by cooling water was increased with the increase of flow rate. 6. The highest thermal efficiency of 32.3% at the flow rate of $20{\ell}/min$ was observed.

  • PDF

Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter (리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.42-47
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors in the automatic remote measurement of water meter a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact switch by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used mostly in measurement application to detect the rotational or translational displacement. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just mounted simply on the conventional mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor two steel leaf springs make mechanical contact and apart repeatedly as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But the digital data is occurred difference or won by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing vehicle near to the switch sensor installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using filter algorithm and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical characteristics.

Pseudanabaena Species Diversity and Off-flavor Material (2-MIB) Production by Cyanobacteria in Korea (우리나라 Pseudanabaena 속 남조류 종다양성 및 남조류 기원 이취미 물질(2-MIB)의 발생)

  • Kim, Keonhee;Park, Chaehongk;Shim, Yeonbo;Kim, Nan-young;Lee, Soogone;Jang, Jaeyoung;Lee, Karam;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.381-397
    • /
    • 2021
  • Off-flavor materials (geosmin and 2-methylisoborneol (2-MIB)) produced by microorganisms, such as, cyanobacteria and actinomycetes, cause freshwater use problems worldwide. Due to unpleasant taste and odor, these microorganisms have raised issues especially in drinking water resources. Recently, there has been increasing concern about 2-MIB and causal cyanobacteria, namely, Pseudanabaena, in Korea. However, material production and ecological dynamics remain largely unexplored. This study reviewed the distribution of Pseudanabaena, its species diversity, and the research trend of molecular ecology related to 2-MIB production in Korea. Based on published literature, we found that seven species of Pseudanabaena which include P. mucicola, P. limnetica, P. redekei, P. catenata, P. galeata, P. yagii, and P. cinerea appeared to occur in a variety of Korean water systems. All of these Pseudanabaena species were found in the North-Han River system (Lakes Soyang, Chuncheon, Uiam, and Paldang). Some of these species were also detected in other watersheds, but the precise species diversity was not identified. Species belonging to the Pseudanabaena genus are hard to classify through general microscopic alpha taxonomy, due to their very small cell size and similar morphological characters. Moreover, the potential of 2-MIB production cannot be detected by microscopic observation. Combining molecular ecological techniques, such as, environmental genomic materials (eDNA, eRNA) analyses to conventional methods could be useful to better understand the off-flavor material production and dynamics, thereby providing more efficient management strategies of freshwater systems.

Investigation on Design Aspects of the Constructed Wetlands for Agricultural Reservoirs Treatment in Korea (농업용 저수지 수질개선을 위한 국내 인공습지 설계 및 시공실태 조사)

  • Kim, Youngchul;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • To improve the water quality of agricultural reservoirs, constructed wetlands are applied in many places. These are technologies that establish ecosystems and important design factors include water depth distribution, inflow and outflow, water flow distribution, hydraulic residence time, water quality treatment efficiency, aspect ratio, and the distribution of open water and covered water surfaces. For high efficiency during the operation of a constructed wetland, the design needs to be optimized and this requires consideration of the different types and length of the intake dam as well as the type and connection of wetland cells. Therefore, this study was conducted to investigate and suggest factors that needs to be considered during the design and for efficient operation measures through field surveys of 23 constructed wetlands that have been established and operated in agricultural reservoirs. Results of the field investigation shows that several sites were being operated improperly due to the malfunctioning or failure of the water level sensors, sedimentation in the intake dam, and clogging of the mechanical sluice frames. In addition, it was found that as the length of the inlet channel increases, the ecological disconnection between the intake dam upstream and the wetland outlet downstream also increases and was identified as a problem. Most of the wetlands are composed of 2 to 5 cells which can result to poor hydraulic efficiency and difficulty in management if they are too large. Moreover, it was found that the flow through a small wetland can be inadequate when there are too many cells due to excessive amounts of headloss.