• Title/Summary/Keyword: small water system

Search Result 1,321, Processing Time 0.027 seconds

NON-DESTRUCTIVE DETECTION FOR FOREIGN MATERIALS IN FOOD AND AGRICULTURAL PRODUCTS USING X-RAY SYSTEM

  • Morita, Kazuo;Tanaka, Shun'ichirou;Ogawa, Yukiharu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.334-343
    • /
    • 1996
  • Quality evaluation for food and agricultural products have always been one of the most elusive problems associated with the handling , processing and marketing in a food plant production. In order to detect physical foreign materials in food and agricultural products, non-destructive techniques have been developed for many years. Application of X-ray system to detect physical foreign materials in food and agricultural products could be considered to be a high potential method. Especially , it is impossible to detect internal physical foreign materials by visual inspections. In this study, it was tried to be applied for two different X-ray devices. Soft X-ray system with CdTe sensor and X-ray CT scanner were evaluated for advantage of the detection of non-meltallic foreign materials in food and agricultural products . Though the soft X-ray is not a high energy radiation, it is possible to detect small different density in a material. The CdTe sensor has a high resolution for t e soft X-ray energy region. The density characteristics of foods and foreign material were expressed region. The density characteristics of foods and foreign materials were expressed as a soft X-ray energy spectrum. The energy spectrum was analyzed by a personal computer with a multi-channel analyzer. X-ray CT scanner can provide visual image and analyze by three dimensional information inside food and agricultural products. The X-ray CT scanner using as a medical equipment was used to detect a foreign material. The density characteristics of food and foreign materials in food were tried to be detected by the threshold value on the basis of the CT numbers. The soft X-ray absorption characteristics for acrylin plates and distilled water were obtained and could be found the possibility of detecting a small physical foreign materials such as a plastic wrapping film , a stone and grasshopper in food and agricultural products.

  • PDF

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Composting Effectiveness of A Sundry System with A Bin-type Composter for Recyle of Animal Wastes (축분뇨처리를 위한 Bin형 부숙조- Sundry 시스템의 퇴비화효율 평가)

  • 최홍림;김현태;정영윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.92-103
    • /
    • 1993
  • A sunday system with a horizontal bin-type composter was constructed and operated to evaluate its composting performance for four days for each test in October, 1992. A sundry system is one of popular systems for composting livestock manure, of which main benefit is to utilize unlimited, clean, and free solar radiation. A rectangular concrete bin(composter) with dimension of 300cm(length) X90cm(width) X60cm(height) was bedded alternatively with four lanes of aeration pipes and heating pipes, and was insulated at three walls with 50mm styrofoam. Each aeration pipe of a diameter of 25mm had 4mm perforated holes at every 15cm longitudinally, and supplied air of about 2m$^3$/min to the composter to maintain aerobic condition . A stirrer rotating at 1 rpm made one round trip every 20 minutes on the conveying chain along the the length of the composter. Five tests (Test 1~Test 5) were implemented to evaluate the composting effectiveness of a sundry system with a horizontal bin-type composter. Treatments of two levels of the mixture ratio of swine manure and paper sludge cakes(manure : paper sludge cakes= 1 : 4 and 1 : 2) and two levels of the water content(W/C ; 70% and 50%) were made to test the significance of the physicochemical properties for decomposition of the mixture materials. Temperature, C/N ratio, water content, microbial activity of the composting materials were taken measurements to evaluate its performance with the lapse of composting time for tests. A small-scale sundry system with a bin-type composter did not appear to be an appropriate system for composting livestock manure. Since heat generation by the composting materials could not overcome heat loss due to areation in a small-scale composter, a proper thermal enviroment could not be maintained to propagate massively thermopilic microorganism relatively in a short period of time. Different from the result of Chol et al.(1992) 6), a temperature variation of the composting materials did not show the peak clearly and C/N ratio didn't lower with time as expected. Mesophilic microoragnism seemed to play an important role for decomposition of the mixture materials. A sundry system with a bin-type composter may be good for a large-scale livestock farm household which may produce enough animal manure. Therefore a decision should be made very carefully to choose a system for composting livestock waste.

  • PDF

Performance Evaluation of Advanced Municipal Wastewater Tretment by Phased Isolation Intrachannel Clarifier Ditch (침전지내장형 상분리 산화구공정에 의한 하수 고도처리특성 평가)

  • Hong, Ki-Ho;Chang, Duk;Han, Sang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.563-570
    • /
    • 2004
  • Phased isolation intrachannel clarifier ditch process developed in this study is an enhanced biological nutrient removal process employing two ditches with intrachannel clarifiers. Bench-scale phased isolation ditch process was used to evaluate the system performance on municipal wastewater and detailed assessment of internal behavior in a ditch and each reactions. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31 days, and cycle times of 4hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 73~78%, and 65~90%, respectively. The internal behavior were well matched on each reactions such as nitrification, denitrification, and phosphorus release and uptake. As the SRT became longer, TN removal increased gradually, whereas TP removal decreased contrarily. However, the system was capable of producing an effluent TP concentration 1mg/L or less even at longer SRTs except the case of solids discharge by malfunction of intra-clarifier occurred by its geometrical limit. The system performance slightly decreased by hydraulic shock loading(increasing of influent flowrate and decreasing of system HRT). However, the higher system performance could be achieved again after four cycles. Thus, the system reliability could be successfully achieved short-term hydraulic shock loading that occurred in medium- and small-sized wastewater treatment plants suffering fluctuation of influent quality and flowrate during wet season.

Analysis of Runoff Reduction Characteristics According to Alloted Detention System in Urban Area (도시유역의 분담저류 방식에 따른 유출저감특성 분석)

  • Kim, Ji -Tae;Kwon, Wook;Kim, Young-Bok;Kim, Soo-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.915-922
    • /
    • 2006
  • National Emergency Management Agency is planning a flood disaster mitigation system in urban area. This research is about analysis of runoff reduction efficiency of the alloted detention system which is one of flood disaster mitigation systems in urban area. The alloted detention system is composed of small to middle size detention facilities located in up and middle stream of urban basin. To analyze runoff reduction efficiency of alloted detention system, basic runoff analysis in test area has been carried out and runoff characteristics with size and locations of detention facilities has been simulated. The results of simulation are showing that alloted detention system can reduce the discharge of main stream and detention facilities' size and locations are major parameters of runoff reduction efficiency. It is concluded that alloted detention system can be a useful method in urban area's flood disaster mitigation and can secure safety against flood damages in urban areas.

Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse (침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구)

  • Hyun, Seunghoon;Kim, Eung Do;Hong, Seungkwan;Ahn, Wonyoung;Yim, Seongkeun;Kim, Geontae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Short-term effects of elevated CO2 on periphyton community in an artificially constructed channel

  • Park, Hye-Jin;Kwon, Dae-Ryul;Kim, Baik-Ho;Hwang, Soon-Jin
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • Background: Direct impact of inorganic carbon (i.e., carbon dioxide ($CO_2$)) on the periphyton community is important to understand how and to what extent atmospheric conditions can affect the structure and dynamics of these communities in lotic systems. We investigated the influence of elevated $CO_2$ concentration on the periphyton community in the artificially constructed channels during the winter period. The channels made of acrylic paneling were continuously supplied with surface water discharged from a small reservoir, which was supported with ground water, at a flow rate of 5 L/min, and water temperature ranging $4-5^{\circ}C$. The effects of elevated $CO_2$ concentrations (790 ppm) were evaluated in comparison with the control (395 ppm $CO_2$) by analyzing pH, water carbon content and nutrients in water, periphyton composition and biomass, chlorophyll-a, ash-free dry-matter at 2-day intervals for 10 days. Results: After the addition of $CO_2$, significant decreases of pH, $NH_3-N$, and $PO_4-P$ (p < 0.05) and increases of chlorophyll-a, ash-free dry-matter, and the cell density of periphyton (p < 0.01) were observed, whereas the species composition of periphyton and water carbon content did not change. Conclusions: These results suggest that elevated $CO_2$ in flowing water system with low temperature could facilitate the growth of periphyton resulting in biomass increase, which could further influence water quality and the consumers throughout the food web.

An Introduction to the Ground Water Model Test (지하수 model에 관한 모형시험방법)

  • 김주욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1301-1305
    • /
    • 1967
  • Ground water flow can be studied with model test. Model test of ground water works are necessary for economic and safe design of the works. Also influence of the ground water flow to the durability and safety of hydraulic structures can be studied with this model. a. Sand model ; Water flow through porous media is the principle of sand model. Darcy's formula is the basic equation, $q=k{\frac{dh}{ds}}^{\circ}. The effect of the ground water flow on the grain system itself is represented with this model only. b. Hele-Shaw model ; In this model use is made of the viscous flow analogy. Viscous fluid such as glycerine flowing through two parallel plates depends on Poiseuille law, $q=-c{\frac{dh}{ds}}$. The analogue can be used vertically and horizontally. c. Heat model ; This is based on the analogy of the Fourier's law for heat conduction and Darcy's law for ground water flow. Especially unsteady problem can be studied with this model. A difficulty of the construction of this model is the isolation, which has to prevent losses of the heat. d. Electirc model ; Ohm's law for electric current is analogous to Darcy's law. Resistance material such as metal foil, graphite block, water with salt added, gelatine with salt added, ete. is connected to electric sources and resistor, and equi-voltage line is detected with galvanometer, $N_aCl$, $CuSo_4$, etc. are used as salt in the model. e. Membrane model ; This model is based on the facts that the deflection of a thin membrane obeys Laplace's equation if there is no load in the direction perpendicular to the membrane, and if the dellection is small.

  • PDF

A Scheme on Energy Efficiency Through the Convergence of Micro-grid and Small Hydro Energy (마이크로그리드와 소수력 에너지의 융합을 통한 에너지 효율화 기법)

  • Kang, Bo-Seon;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • As smart grid techniques developed, public attention is concentrating on energy efficiency. So it is necessary to study on new renewable energy in order to manage the energy within micro grid consisting smart grid. Among them, small hydro energy has the advantage of being installable anywhere depending the amount of water used by the users within micro grid. This study examines if the measured value is appropriate for small hydro power generation by measuring generation quantity and operation rate of generator based on the sewage flow used by apartments and multi-unit dwellings where those users live. Some appropriate apartments and multi-unit dwellings generate electricity with small hydro generator using sewage as potential energy. This study intends to suggest more effective management by introducing energy management system and electricity storage device of micro grid.

Serial Flow Microwave Thermal Process System for Liquid Foods

  • Kim, Young-Jin;Lim, Seok-Won;Chun, Jae-Kun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.446-449
    • /
    • 2005
  • Two single-magnetron heating systems (SM-HS), each with a helical glass heat exchanger and a cylindrical cavity, were combined to make a two-magnetron-in-series heating system (2MS-HS) in order to increase the heating capacity. A comparison using water showed that the heating performance of the 2MS-HS was increased by two-fold as compared to that of the SM-HS, resulting in energy saving of 7.0% in 2MS-HS. Pasteurization test of 2MS-HS conducted with model food (LB broth contaminated with Bacillus subtilis) showed two-fold higher treatment capacity compared to SM-HS. Relationships between outlet temperature of the processed food, flow rate, and residence time in the 2MS-HS were established for water. Optimum pasteurization capacity was 17 s, $73^{\circ}C$, at flow rate of 280 ml/min. The 2MS-HS could be applied to the small-scale pasteurization of liquid food.