• Title/Summary/Keyword: small water system

Search Result 1,321, Processing Time 0.026 seconds

Thermal Performance of a Small-scale Loop Heat Pipe for Terrestrial Application (지상용 소형 루프히트파이프 성능에 관한 연구)

  • Chung, Won-Bok;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1052-1057
    • /
    • 2004
  • A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm ${\times}$ 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) ${\times}$ 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of $100^{\circ}C$. The minimum thermal load of 10 W (0.8 W/cm2) and maximum thermal load of 80 W (6.5 W/cm2) were achieved using methanol as working fluid with the condenser temperature of $20^{\circ}C$ with horizontal position.

  • PDF

Characteristics of Runoff Variation due to Watershed Urbanization (유역의 도시화에 따른 유출변화특성)

  • Heo, Chang-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.725-740
    • /
    • 2003
  • Urbanization concerned with concentration of population, activity and expanding the urban changes a natural environmental, and human activity in urban area causes the appearance of a new hydrologic cycle system. This study is carried out the analysis for the characteristics of runoff variation in urban areas with progress of urbanization. To simulate the mechanics of runoffs on small urban watershed, the ILLUDAS model is used in this study. From the analysis of the urban-runoff processes in small urban area with the progress of urbanization, the following conclusions is obtained. It is found in the results of calculated geographical parameter that peak time is quickened by 15∼35 minutes rather than the urbanization before. Also, in the analysis of the peak rate of runoff, the peak flow rise by 60 % than the urbanization before.

The Mixing of Forced Plume In the Coastal Waters (연안해역 중력 분류의 혼합 과정)

  • Jang, Seon-Deok;Seo, Jeong-Mun;Lee, Jong-Seop
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.26-33
    • /
    • 1990
  • The behavior and mixing process of the forced plume are studied in the hydraulic laboratory. The dilution rate of discharged waste water from the port in various hydraulic condition was analized. The effect of densimetric Froude number and the discharge type on the dilution rate are discussed: In the vertical discharge, the forced plume of small densimetric Froude number mixes more actively than that of the large one. In the horizontal discharge, forced plume of large densimetric Froude number dilutes more rapidly than that of the small one. The mixing takes place more vigorously in the horizontal discharge than in the vertical one. The multi-port diffuser is more effective for the waste water discharge system than the single port diffuser in the tidal swinging coastal sea.

  • PDF

Effects of Inflow Fluctuation on the Removal Efficiency in Low Strength Sewage Treatment using Sequencing Batch Reactor Process during Rainfall (강우시 저농도 고수리부하가 회분식 반응조 제거효율에 미치는 영향)

  • Oa, Seongwook;Kim, Geonha;Son, Bongho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.91-96
    • /
    • 2006
  • Many small scale Sewage Treatment Plants (STPs) are currently being constructed at many rural areas. The STPs in rural area suffer from low concentration and large inflow quantity fluctuation during wet weather mainly due to illicit combined sewer system. Sequencing Batch Reactor (SBR) is a process effectively coping with these obstacles. The main objective of this study was to evaluate SBR with high hydraulic loading and low inflow concentration. The operating conditions tested were: organic loading rate = $0.17-0.42KgBOD/m^3/d$, hydraulic loadings = $12.1-61.5m^3/m^2/d$, average MLSS concentration = 2500 mg/L, F/M ratio = 0.026-0.17 KgBOD/Kg MLSS, HRT = 9-12 hr HRT, and SRT = 5.6-33.6 days. Organic loading rate on SBR did not impact significantly on BOD and SS removal efficiencies. To increase treatment efficiencies, low hydraulic loading rate with low concentration was required. The results suggested that low influent concentration with high inflow rates during wet weather requires extended time for settling.

Monitoring Technology for Flood Forecasting in Urban Area (도시하천방재를 위한 지능형 모니터링에 관한 연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.405-408
    • /
    • 2008
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Runoff simulation for operation of small urban storm water pumping station under heavy storm rainfall conditions (집중호우 시 도시 소유역 배수펌프장 운영을 위한 강우유출모의)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Sung-Geun;Lee, Chang-No;Kim, Goo-Hyeon
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.

  • PDF

A Study on the Applicability of ENERWATER for Evaluation of the Energy Consumption Label of WWTPs in Korea (국내 하수처리시설 에너지 등급 평가를 위한 ENERWATER의 적용 가능성에 관한 연구)

  • Park, Minoh;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.231-239
    • /
    • 2022
  • In this study, we applied ENERWATER to evaluate the energy consumption labeling of wastewater treatment plants in Korea using the Korea sewerage statistics data. The results showed that the energy label status was excellent in the SBR process for small and medium-scale wastewater treatment plants and the A2O process for large-scale wastewater treatment plants. The energy labeling of wastewater treatment plants of 50,000 tons capacity was excellent. The statuses of metropolitan cities and Jeollanam-do province were excellent. We analyzed the effects of renewable energy on wastewater treatment plants' energy consumption and found out that digestion gas for large-scale plants and photovoltaic energy for small-scale plants were effective in improving energy labeling. In addition, we compared the energy labels of four wastewater treatment plants in "Z" city and wastewater treatment plant "X" had the best energy label, and the wastewater treatment plants "V" and "Y" had to be selected as priorities for the energy diagnosis and improvement project. In a comprehensive conclusion, the applicability of ENERWATER was confirmed based on sewage statistics data and labeling can be used to set priorities for the energy diagnosis and improvement project.

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

Evaluation of Tank Capacity of Rainwater Harvesting System to Secure Economic Feasibility and Sensitivity Analysis (경제성 확보를 위한 빗물이용시설의 규모 산정 및 민감도 분석)

  • Mun, Jung-Soo;Kim, Ha-Na;Park, Jong-Bin;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • Rainwater harvesting systems (RWHS), one of measures for on site rainwater management, have been promoted by laws, regulations and guidelines and have been increased. However, more evaluation of economic feasibility on RWHS is still needed due to seasonal imbalance of rainfall and little experiences and analysis on design and operation of RWHS. In this study, we investigated tank capacity of RWHS to secure economic validity considering catchment area and water demand, which is affected by building scale. Moreover, sensitivity analysis was performed to examine the effect of design factors, cost items and increase rate of water service charge on economic feasibility. The BCR (benefit cost ratio) is proportional to the increase in tank capacity. It is increased steeply in small tank capacity due to the effect of cost and, since then, gently in middle and large tank capacity. In case of 0.05 in the rate of tank volume to catchment area and 0.005 in water demand to catchment area, BCR was over one from the tank capacity of 160 $m^{3}$ taking into account of private benefits and from the tank capacity of 100 $m^{3}$ taking into account of private and public benefits. Sensitivity analysis shows that increase of water demand can improve BCR values with little cost so that it is needed to extend application of rainwater use and select a proper range of design factor. Decrease of construction and maintenance cost reduced the tank volume to secure economic validity. Finally, increase rate of water service charge had considerable impact on economic feasibility.

Basic Survey for Evaluation of Instream flow at Natural Recovery Reach (자연형 하천 복원구간의 하천유지유량 산정을 위한 기초조사)

  • Sea, Kyu-Woo;Woo, Sang-Hwan;Kim, Gwang-Seob
    • Journal of Wetlands Research
    • /
    • v.3 no.2
    • /
    • pp.119-131
    • /
    • 2001
  • This study uses HEC-RAS for the quantitative aspects and the QUAL2E model for the qualitative aspects of the flow of urban streams, where the natural recovery system is applied. The instream flow of the small streams is estimated using the numerical model by verifying the existing data with the acquired data. The characteristics of the model reach place more weight on the drought discharge around the ordinary discharge, and this is caused by the natural recovery system that maintains the existing bank. The data of direct discharge to the sewage treatment plant through the inception pipe, BOD, DO, temperature, and so forth, are the official data from the department of environment. Considering the characteristics of small streams, the factors for the QUAL2E model are estimated with the focus on the hydraulic conditions and the stream view. This study proposes the future improvements for the natural recovery system by investigating the practical use of the waterfront and the application of the proper instream flow. Also, the hydraulic and hydrological investigation of the covering rate by the natural vegetation and the meandering by the varying river way is performed.

  • PDF