• Title/Summary/Keyword: small size chip

Search Result 227, Processing Time 0.026 seconds

Development of Retinal Prosthesis Module for Fully Implantable Retinal Prosthesis (완전삽입형 인공망막 구현을 위한 인공망막모듈 개발)

  • Lee, Kang-Wook;Kaiho, Yoshiyuki;Fukushima, Takafumi;Tanaka, Tetsu;Koyanagi, Mitsumasa
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.292-301
    • /
    • 2010
  • To restore visual sensation of blind patients, we have proposed a fully implantable retinal prosthesis comprising an three dimensionally (3D) stacked retinal chip for transforming optical signal to electrical signal, a flexible cable with stimulus electrode array for stimulating retina cells, and coupling coils for power transmission. The 3D stacked retinal chip is consisted of several LSI chips such as photodetector, signal processing circuit, and stimulus current generator. They are vertically stacked and electrically connected using 3D integration technology. Our retinal prosthesis has a small size and lightweight with high resolution, therefore it could increase the patients` quality of life (QOL). For realizing the fully implantable retinal prosthesis, we developed a retinal prosthesis module comprising a retinal prosthesis chip and a flexible cable with stimulus electrode array for generating optimal stimulus current. In this study, we used a 2D retinal chip as a prototype retinal prosthesis chip. We fabricated the polymide-based flexible cable of $20{\mu}m$ thickness where 16 channels Pt stimulus electrode array was formed in the cable. Pt electrode has an impedance of $9.9k{\Omega}$ at 400Hz frequency. The retinal prosthesis chip was mounted on the flexible cable by an epoxy and electrically connected by Au wire. The retinal prosthesis chip was cappted by a silicone to pretect from corrosive environments in an eyeball. Then, the fabricated retinal prosthesis module was implanted into an eyeball of a rabbit. We successfully recorded electrically evoked potential (EEP) elicited from the rabbit brain by the current stimulation supplied from the implanted retinal prosthesis module. EEP amplitude was increased linearly with illumination intensity and irradiation time of incident light. The retinal prosthesis chip was well functioned after implanting into the eyeball of the rabbit.

Development of FPGA-based Programmable Timing Controller

  • Cho, Soung-Moon;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1016-1021
    • /
    • 2003
  • The overall size of electronic product is becoming small according to development of technology. Accordingly it is difficult to inspect these small components by human eyes. So, an automation system for inspecting them has been used. The existing system put microprocessor or Programmable Logic Controller (PLC) use. The structure of microprocessor-based controller and PLC use basically composed of memory devices such as ROM, RAM and I/O ports. Accordingly, the system is not only becomes complicated and enlarged but also higher price. In this paper, we implement FPGA-based One-chip Programmable Timing Controller for Inspecting Small components to resolve above problems and design the high performance controller by using VHDL. With fast development, the FPGA of high capacity that can have memory and PLL have been introduced. By using the high-capacity FPGA, the peripherals of the existent controller, such as memory, I/O ports can be implemented in one FPGA. By doing this, because the complicated system can be simplified, the noise and power dissipation problems can be minimized and it can have the advantage in price. Since the proposed controller is organized to have internal register, counter, and software routines for generating timing signals, users do not have to problem the details about timing signals and need to only send some values about an inspection system through an RS232C port. By selecting theses values appropriate for a given inspection system, desired timing signals can be generated.

  • PDF

On-Demand Remote Software Code Execution Unit Using On-Chip Flash Memory Cloudification for IoT Environment Acceleration

  • Lee, Dongkyu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.191-202
    • /
    • 2021
  • In an Internet of Things (IoT)-configured system, each device executes on-chip software. Recent IoT devices require fast execution time of complex services, such as analyzing a large amount of data, while maintaining low-power computation. As service complexity increases, the service requires high-performance computing and more space for embedded space. However, the low performance of IoT edge devices and their small memory size can hinder the complex and diverse operations of IoT services. In this paper, we propose a remote on-demand software code execution unit using the cloudification of on-chip code memory to accelerate the program execution of an IoT edge device with a low-performance processor. We propose a simulation approach to distribute remote code executed on the server side and on the edge side according to the program's computational and communicational needs. Our on-demand remote code execution unit simulation platform, which includes an instruction set simulator based on 16-bit ARM Thumb instruction set architecture, successfully emulates the architectural behavior of on-chip flash memory, enabling embedded devices to accelerate and execute software using remote execution code in the IoT environment.

A Low-Noise and Small-Size DC Reference Circuit for High Speed CMOS A/D Converters

  • Hwang, Sang-Hoon;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In a high-speed flash style or a pipelining style analog-to-digital converter (A/D converter), the DC reference fluctuation caused by external noises becomes serious, as the sampling frequency is increased. To reduce the fluctuations in conventional A/D converters, capacitors have been simply used, but the layout area was large. Instead of capacitors, a low-noise and small-size DC reference circuit based on transmission gate (TG) is proposed in this paper. In order to verify the proposed technique, we designed and manufactured a 6-bit 2GSPS CMOS A/D converter. The A/D converter is designed with a 0.18um 1-poly 6-metal n-well CMOS technology, and it consumes 145mW at 1.8V power supply. It occupies the chip area of 977um by 1040um. The measured result shows that SNDR is 36.25 dB and INL/DNL is within 0.5LSB, even though the DC reference fluctuation is serious.

A PLL with loop filter consisted of switch and capacitance (커패시턴스와 스위치로 구성된 루프필터를 가진 PLL)

  • Ahn, Sung-Jin;Choi, Young-Shig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.154-156
    • /
    • 2016
  • In this paper, the proposed small size PLL works stable with the discrete loop filter which is controlled by voltage controlled oscillator's output signal. Sampling and a small size capacitor functioned negative feedback with switch does make it possible to integrate the PLL into a single chip. The proposed PLL is designed by 1.8V 0.18um CMOS process.

  • PDF

Fast locking single capacitor loop filter PLL with Early-late detector (Early-late 감지기를 사용한 고속 단일 커패시터 루프필터 위상고정루프)

  • Ko, Ki-Yeong;Choi, Yong-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.339-344
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) which has small size and fast locking time with Early-late detector, Duty-rate modulator, and Lock status indicator (LSI) is proposed in this paper. The area of loop filter usually occupying the larger portion of the chip is minimized using a single small capacitor. While the conventional PLL with a single capacitor loop filter cannot work stably, the proposed PLL with two charge pumps works stably because the output voltage waveform of the proposed a single capacitor loop filter is the same as the output voltage waveform of the conventional 2nd-order loop filter. The two charge pumps are controlled by the Early-late detector which detects early-late status of UP and DN signals, and Duty-rate modulator which generates a steady duty-rate signal. Fast locking time is achieved using LSI. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

Design of Mobile Handset Chip Antenna with a Backside Ground for Wi-Fi Application (후면 그라운드를 이용한 휴대단말 Wi-Fi 칩 안테나 설계)

  • Oh, Sae-Won;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.592-597
    • /
    • 2012
  • In this paper, a new small chip antenna for Wi-Fi application of the mobile handset is proposed. To miniaturize the chip antenna, the proposed antenna is designed to have the backside ground. The proposed antenna has S-shaped structure, which is designed on the LCP(Liquid Crystal Polymer) with ${\varepsilon}_r$=3.5. The size of the proposed antenna is $6.0mm{\times}2.5mm{\times}1.2mm$. The measured impedance bandwidth under a voltage standing wave ratio (VSWR) of 2 was 300 MHz(fractional bandwidth: 12.2 % 2.3~2.6 GHz), and peak gain is 1.42 dBi. The proposed antenna was designed using CST Microwave Studio commercial software tool. And the fabricated antenna is measured using a network analyzer and in anechoic chamber.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Design and Fabrication of the Triple Band(DCS, PCS, UPCS) Internal Chip Antenna (내장형 트리플(DCS, PCS, UPCS) 칩 안테나 설계 및 제작)

  • Park, Seong-Il;Park, Sung-Ha;Ko, Young-Hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1261-1266
    • /
    • 2009
  • In this paper, triple band mobile chip antenna for DCS(1.71${\sim}$1.88GHz) / PCS(1.75${\sim}$1.87GHz) / UPCS(1.8S${\sim}$1.99GHz) on PCB Layout is designed. To analyze the characteristics of the designed antenna, we used commerical simulation tool(HFSS). Triple and wide band characteristic could be realized the measured bandwidth(V.S.W.R<2.0) of the designed antenna operated in 1.71GHz${\sim}$1.99GHz. The size of the designed antenna is about 19mm${\times}$4mm${\times}$1.6mm, narrow bandwidth which is a defect of chip antenna is improved. And its experimental results were a good agreement with simulation performance.

Dickson Charge Pump with Gate Drive Enhancement and Area Saving

  • Lin, Hesheng;Chan, Wing Chun;Lee, Wai Kwong;Chen, Zhirong;Zhang, Min
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1209-1217
    • /
    • 2016
  • This paper presents a novel charge pump scheme that combines the advantages of Fibonacci and Dickson charge pumps to obtain 30 V voltage for display driver integrated circuit application. This design only requires four external capacitors, which is suitable for a small-package application, such as smart card displays. High-amplitude (<6.6 V) clocks are produced to enhance the gate drive of a Dickson charge pump and improve the system's current drivability by using a voltage-doubler charge pump with a pulse skip regulator. This regulation engages many middle-voltage devices, and approximately 30% of chip size is saved. Further optimization of flying capacitors tends to decrease the total chip size by 2.1%. A precise and simple model for a one-stage Fibonacci charge pump with current load is also proposed for further efficiency optimization. In a practical design, its voltage error is within 0.12% for 1 mA of current load, and it maintains a 2.83% error even for 10 mA of current load. This charge pump is fabricated through a 0.11 μm 1.5 V/6 V/32 V process, and two regulators, namely, a pulse skip one and a linear one, are operated to maintain the output of the charge pump at 30 V. The performances of the two regulators in terms of ripple, efficiency, line regulation, and load regulation are investigated.