• 제목/요약/키워드: small signal modeling

검색결과 150건 처리시간 0.036초

무궁화 위성체 전압조절장치 모델링 (The Modeling of Power Regulator for KOREASAT)

  • 정규범;김성규;황보한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.310-312
    • /
    • 1994
  • A partial shunt regulator (PSR) which is the power regulator of KOREASAT is modeled. The modeling of the PSR consist of solar array, power circuit, controller. and load models. To realize simple structure. a voltage source of the PSR controller is used the output voltage of the PSR. The model of the PSR has very complex structure with two additional coupled feedback loops. The complex model is simplified to a simple meaningful model with only main feedback control loop. The proposed model is compared to a PSR model with DC voltage source at the PSR controller. The proposed PSR model is verified by comparing the model with SPICE simulation for small signal analysis.

  • PDF

Modeling and Control of ISOP Active-Clamp-Forward Converter for xEV Low Voltage DC/DC Converter

  • Naradhipa, Adhistira M.;Kim, Byeongwoo;Kim, Kangsan;Cho, Woosik;Choi, Sewan;Huh, Dongyoung;Kim, Soohong;Cho, Kyungrae
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.99-101
    • /
    • 2018
  • This paper present an input-series output-parallel active-clamp-forward converter for low voltage dc/dc xEV application. The converter can achieve ZVS turn-on for all switches. An accurate small signal model of the converter which includes the effect of leakage inductance is given and controller design based on modeling is described. Experimental and simulation results from a 3.2kW, 100kHz prototype are presented in order to verify the validity of the converter operation and the designed control parameters.

  • PDF

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

행위 기반 제어에 의한 축구로봇 설계 (Design of Behavior-based Soccer Robot)

  • 김종우;성영휘;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.365-368
    • /
    • 2005
  • This paper describes the implementation of autonomy in the motion of a small size human robot. Traditional modeling of environment and concept of moving planning have limitations to adapt the change of environment and to implement in real-time operation. To overcome these limitations, we designed a behavior-based control algorithm and applied to robot soccer. Based on experiment, we verify that the behavior-based control algorithm works well in the change of environment.

  • PDF

태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구 (A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System)

  • 이규민;김일송
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

인공위성 자세제어를 위한 제어 모멘트 자이로의 정밀 모델링 (Analytic Modeling of Control Moment Gyros)

  • 명현삼;이현재;박종오;방효충;오시환;용기력
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.640-646
    • /
    • 2007
  • 인공위성의 정밀 자세제어 문제에서 자세지향 및 안정성을 저해하는 구동기 교란의 효과는 매우 중요한 인자 중 하나라 할 수 있다. 최근 CMG는 그 구조의 복잡성에도 불구하고 반작용휠에 비교할 때 고출력저중량이라는 장점에 근거하여 인공위성의 차세대 구동기로 많은 연구가 진행되고 있다. 정밀자세제어가 요구되는 인공위성의 구동기로 이용되기 위해서는 CMG가 위성 동체에 주게 될 교란력의 특성을 파악하는 것이 필수적이다. 본 논문에서는 CMG의 교란토크 및 교란력를 분석하기 위해 정적동적 불균형을 가정하고, 라그랑지안 방법을 이용하여 소신호 가정을 통해 해석적 모델을 유도하였다.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

RF MOSFET의 주파수 종속 입력 저항에 대한 이론적 분석 (Theoretical Analysis of Frequency Dependent Input Resistance in RF MOSFETs)

  • 안자현;이성현
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.11-16
    • /
    • 2017
  • RF MOSFET에서 관찰된 입력 저항의 주파수 종속 특성이 단순화된 입력 등가회로로부터 유도된 pole과 zero 주파수 수식을 사용하여 자세히 분석되었다. 이러한 이론적 분석을 사용하여 저주파에서 입력저항의 감소현상이 포화영역에서 소스와 pinch-off 영역 사이의 채널저항으로부터 발생되는 것을 발견하였다. 이와 같이 저주파에서 입력저항이 감소하는 채널 저항 효과는 채널저항을 변화시키면서 소신호 등가회로 모델링을 수행하여 물리적으로 입증되었다.

"PV Converter 모델링"을 적용한 MPPT제어기법 (Boost Converter Modeling of Photovoltaic Conditioning System for MPPT)

  • 최주엽;최익;송승호;안진웅;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.