Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.2
/
pp.78-88
/
2009
In many face recognition problems, the number of available images is limited compared to the dimension of the input space which is usually equal to the number of pixels. This problem is called as the 'small sample size' problem and regularization methods are typically used to solve this problem in feature extraction methods such as LDA. By using regularization methods, the modified within class matrix becomes nonsingu1ar and LDA can be performed in its original form. However, in the process of adding a scaled version of the identity matrix to the original within scatter matrix, the scale factor should be set heuristically and the performance of the recognition system depends on highly the value of the scalar factor. By using the proposed resampling method, we can generate a set of images similar to but slightly different from the original image. With the increased number of images, the small sample size problem is alleviated and the classification performance increases. Unlike regularization method, the resampling method does not suffer from the heuristic setting of the parameter producing better performance.
Proceedings of the Korean Geotechical Society Conference
/
2008.10a
/
pp.1109-1114
/
2008
To investigate the effect of sample size on coefficient of consolidation of non-homogeneous soil, the result of a large size consolidation test using a huge undisturbed sample with $1200mm(D){\times}2000mm(H)$ in dimension is compared with that of oedometer test using undisturbed small sample. In addition, test results are compared with those of same test using remold sample. Experimental results show that, due to the lump of sand/silt was mixed in sample, the coefficient of consolidation of undisturbed samples have a difference for each tests. Whereas, the difference of coefficient of consolidation between remolded large and small samples is not found. Because sample size affects the test results, sample must be carefully selected for non-homogeneous soil.
Journal of Korean Society of Industrial and Systems Engineering
/
v.29
no.1
/
pp.34-40
/
2006
Many producers put sampling inspection policy into the way of their convenience. Examples of the convenience are irregular lot size and too small sample size. Because they don't use a standard sampling inspection policy, they can not guarantee the quality level of their products. In this study, we developed a user-centered design program which can calculate the AOQL of their products to their buyers in the case of irregular lot size and too small sample size. Also this program propose a linear inspection cost by Hald's model.
Background: Parametric statistical procedures are typically conducted under the condition in which a sample distribution is statistically identical with its population. In reality, investigators use inferential statistics to estimate parameters based on the sample drawn because population distributions are unknown. The uncertainty of limited data from the sample such as lack of sample size may be a challenge in most rehabilitation studies. Objects: The purpose of this study is to review the bootstrapping method to overcome shortcomings of limited sample size in rehabilitation studies. Methods: Articles were reviewed. Results: Bootstrapping method is a statistical procedure that permits the iterative re-sampling with replacement from a sample when the population distribution is unknown. This statistical procedure is to enhance the representativeness of the population being studied and to determine estimates of the parameters when sample size are too limited to generalize the study outcome to target population. The bootstrapping method would overcome limitations such as type II error resulting from small sample sizes. An application on a typical data of a study represented how to deal with challenges of estimating a parameter from small sample size and enhance the uncertainty with optimal confidence intervals and levels. Conclusion: Bootstrapping method may be an effective statistical procedure reducing the standard error of population parameters under the condition requiring both acceptable confidence intervals and confidence level (i.e., p=.05).
This research examines the effect of positively skewed population distribution on the two sample t-test through simulation. For simulation work, two independent samples were selected from the same chi-square distributions with 3, 5, 10, 15, 20, 30 degrees of freedom and sample sizes 3, 5, 10, 15, 20, 30, respectively. Chi-square distribution is largely skewed to the right at small degrees of freedom and getting symmetric as the degrees of freedom increase. Simulation results show that the sampled populations are distributed positively skewed like chi-square distribution with small degrees of freedom, the F-test for the equality of variances shows poor performances even at the relatively large degrees of freedom and sample sizes like 30 for both, and so it is recommended to avoid using F-test. When two population variances are equal, the skewness of population distribution does not affect on the t-test in terms of the confidence level. However even though for the highly positively skewed distribution and small sample sizes like three or five the t-test achieved the nominal confidence level, the error limits are very large at small sample size. Therefore, if the sampled population is expected to be highly skewed to the right, it will be recommended to use relatively large sample size, at least 20.
There has been increasing attention on sample size requirements in peer reviewed medical literatures. Accordingly, a statistically-valid sample size determination has been described for a variety of medical situations including diagnostic test accuracy studies. If the sample is too small, the estimate is too inaccurate to be useful. On the other hand, a very large sample size would yield the estimate with more accurate than required but may be costly and inefficient. Choosing the optimal sample size depends on statistical considerations, such as the desired precision, statistical power, confidence level and prevalence of disease, and non-statistical considerations, such as resources, cost and sample availability. In a previous paper (J Vet Clin 2012; 29: 68-77) we briefly described the statistical theory behind sample size calculations and provided practical methods of calculating sample size in different situations for different research purposes. This review describes how to calculate sample sizes when assessing diagnostic test performance such as sensitivity and specificity alone. Also included in this paper are tables and formulae to help researchers for designing diagnostic test studies and calculating sample size in studies evaluating test performance. For complex studies clinicians are encouraged to consult a statistician to help in the design and analysis for an accurate determination of the sample size.
A critical assumption of the standard sample size calculation is that the response (outcome) for an individual patient is completely independent to that for any other patient. However, this assumption no longer holds when there is a lack of statistical independence across subjects seen in cluster randomized designs. In this setting, patients within a cluster are more likely to respond in a similar manner; patient outcomes may correlate strongly within clusters. Thus, direct use of standard sample size formulae for cluster design, ignoring the clustering effect, may result in sample size that are too small, resulting in a study that is under-powered for detecting the desired level of difference between groups. This paper revisit worked examples for sample size calculation provided in a previous paper using nomogram to easy to access. Then we present the concept of cluster design illustrated with worked examples, and introduce design effect that is a factor to inflate the standard sample size estimates.
The effects of particle sizes (small, medium and large sizes) and gelatinization treatment on the changes of the instant properties of Job's tears powder were investigated. The degree of gelatinization on the different particle size samples of Job's tears powder was the highest in the small particle size, and it also showed an increasing trend regardless of pregelatinizing whether it is or not as the particle size decreased from large particle size to small particle size. The water solubility index of the pregelatinized samples was high compared to that of ungelatinized samples regardless of particle size and temperatures. The water absorption and swelling power increased as particle size and temperature were increased. The dispersibility and sinkability of ungelatinized sample was increased as particle size and temperature were increased and it also showed lower value regardless of particle size and temperature. However, the dispersibility and sinkability of pregelatinized samples were shown to have the opposite result, such that the smallest particle size of pregelatinized sample had the lowest sinkability (11.3%). The turbidity of the pregelatinized small particle size was the highest by a factor of 1.08.
Liang and Zeger proposed generalized estimating equations(GEE) for analyzing repeated data which is discrete or continuous. GEE model can be extended to model for repeated categorical data and its estimator has asymptotic multivariate normal distribution in large sample sizes. But GEE is based on large sample asymptotic theory. In this paper, we study the properties of GEE estimators for repeated ordinal data in small sample sizes. We generate ordinal repeated measurements for two groups using two methods. Through Monte Carlo simulation studies we investigate the empirical type 1 error rates, powers, relative efficiencies of the GEE estimators, the effect of unequal sample size of two groups, and the performance of variance estimators for polytomous ordinal response variables, especially in small sample sizes.
Communications for Statistical Applications and Methods
/
v.26
no.6
/
pp.527-538
/
2019
This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.