• Title/Summary/Keyword: small fire(少火)

Search Result 49, Processing Time 0.026 seconds

Development of Fire Extinguishing System Suitable for Unmanned Engine Room of a Small Ship (소형선박 기관실화재에 대한 자동소화시스템 개발연구)

  • Kim, Dong-Suk;Kwark, Ji-Hyun;Kang, Dae-Sun;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.96-100
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small ship was performed. Fire tests were conducted inside the compartments having volume $8m^3,\;4.5m^3\;and\;2.9m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel. In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

Fire Extinguishing Performance of Condensed Aerosol Extinguisher on the B,C Class Fire in a Small Cabinet (고체에어로졸 소화장치의 B, C급 소공간 화재 소화성능 연구)

  • Park, Yong-Hwan;Kim, Bum-Kyu;Lee, Sung-Me
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.139-146
    • /
    • 2009
  • 현재 배전반, 소규모 유류저장고 등은 법적 의무 대상 공간이 아니어서 화재시 초기소화 실패로 인해 큰 재산상의 피해를 겪고 있으며, 이러한 소공간 화재에 대응할 수 있는 적합한 소화장치의 제도적 뒷받침이 시급한 실정이다. 현재 소공간용 소화장치에 대한 KFI 인정기준은 제정되어 있는 상태지만 다양한 새로운 기술에 부합하지 못하고 있어 소공간 소화장치에 대한 세분화된 법적기준 마련이 필요한 실정이다. 이에 본 연구에서는 국내외적으로 큰 관심을 받고 있을 뿐만 아니라 현재 KFI 인정기준으로도 제정되어 있는 고체에어로졸 소화장치가 B,C급 배전반, 분전반 등의 소공간 화재에 미칠 수 있는 소화성능을 실험적으로 분석하고 고체에어로졸 소화장치의 소공간화재 적합성 여부를 고찰해보고자 한다.

  • PDF

Optimum Fire Extinguishing Modeling using Impact Factor Analysis on Water Mist System of Pool Fire (영향인자 분석을 통한 고임화재의 미분무수 최적소화 모델링)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Lee, Sung-Eun;Kim, Sung-Won;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.84-89
    • /
    • 2009
  • In this study, the fire extinguishing experiment was performed using a water mist nozzle with variation of factors which affect on the extinguishing time. The variables were distance from nozzle center to fire location, droplet size, height of nozzle and opening or not. With the experimental data, interaction and sensitivity between factors were analysed with Mini tab and deduce a optimum model of fire extinguishing of water mist system. Based on the experiment and modeling of fire extinguishing with water mist system, the most important factor on extinguishing time is the distance from the center of nozzle to fire and the opening effect was small compare with other factors.

Extinguishing Characteristics of Liquid Pool Eire by Water Mist Containing Sodium Salt (나트륨 염이 첨가된 미분무수의 액체 pool fire소화특성)

  • Park Jae-Man;Shin Chang-Sub
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.13-19
    • /
    • 2005
  • An experimental study is presented for extinguishing characteristics of liquid fuel fire by water mist containing sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing an additive, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space to measure flame temperature variation. The average evaporation rate of a water droplet containing an additive was lower than that of a pure water droplet at a given surface temperature due to the precipitation of salt in the liquid-film and change of surface tension. In case of using an additive, the flame temperature was lower than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing an additive was increased reducing flame size. And also dissociated metal atoms, sodium, were reacted as a scavenger of the major radical species OH^-,\;H^+$ which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire (미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향)

  • Oh, Sang-Youp;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성에 관한 실험적 연구)

  • jang, Yong-Jae;Kim, Myung-Bae;Kim, Yu
    • Fire Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline fire. Experiments are carried out for the gasoline pool fire nth the atomizing nozzles. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions. Air entrainment due to the water spray and extinguishing process of gasoline fire by water spray are visualized. Boundary conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown. As the result of experiments, it is found that the velocity of entrainment air and sprayed water are almost same and the water droplets size having small diameter under 40$\mu\textrm{m}$ can not extinguish the fire because too small droplets does not reach the fuel surface.

  • PDF

A Study on the Development of Fire Extinguishing System for Machinery Spaces of a Small craft (무인기관실에 효과적인 자동소화장치개발 관한 연구)

  • Lee, Chan-Jea;Kang, Dae-Sun;Kim, Dong-Suk;Kwark, Ji-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • A study developing the dry powder fire extinguishing system inside the simulated machinery spaces of small boats was performed. Fire tests were conducted inside the compartments having volumes 2.9, 4.5, $8m^3$ respectively. The openings and fans were established on the walls of the compartments. Diesel oil was used for the test fuel, In addition fire extinguishing nozzles using dry powder were installed downward at ceiling and horizontally at the wall or conner. All fires in the test were extinguished under system activation and there was no reignition.

  • PDF

Experimental study of extinguishment of the pure diffusion flame using water spray (수분무를 이용한 순수확산화염의 소화에 관한 실험적 연구)

  • Jang, Yong-Jae;Kim, Myeong-Bae;Kim, Jin-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.624-631
    • /
    • 1996
  • This study describes extinguishment mechanism of the purely buoyant diffusion flame using the water spray. Experiments are systematically carried out for the oul pool fire with the six different atomizing nozzles. From the measurement of burning rate which represents the combustion intensity of fire, it is observed that the water spray is able to act to enhance fire rather than to extinguish fire. The air entertainment due to the water spray is visualized to understand this phenomenon, acting to enhance fire. In order to observe effects of droplet size on fire extinguishment, and amount of water which reaches the flame base, fuel surface, and mean diameter of droplets are measured. When water droplets are too small, they do not reach the flame base because they can the water spray having too small doplets is ineffective for extinguishment of the oil fire.