• Title/Summary/Keyword: small dam improvement

Search Result 19, Processing Time 0.032 seconds

Application of Physical Habitat Simulation System (PHABSIM) in the Reach of Small Dam Removal for Zacco platypus (피라미에 대한 보 철거 구간에서의 물리서식처 모의(PHABSIM) 적용)

  • Im, Dong-Kyun;Jung, Sang-Hwa;Ahn, Hong-Kyu;Kim, Kyu-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.909-920
    • /
    • 2007
  • River restoration and environmental improvement projects have been peformed by social needs, therefore methodology for evaluating such projects must be provided. The PHysical HABitat SIMulation system (PHABSIM) is proposed as a tool for the assessment of hydraulic habitat suitability for aquatic species related to flow regime in river. This study evaluates the change of physical habitat for Zacco platypus according to small dam removal and the model suitability by applying PHABSIM to the reach where small dam was removed. It is shown that the physical habitat is generally increased and improved where the small dam was removed. However, physical habitat in the spawning stage that has a weak swimming speed is decreased by increased flow velocity in the upstream area of small dam, so proper countermeasure for that condition should be needed. Consequently, PHABSIM can be effectively used to provide methodology for assessment and necessity of various river projects including a removal of out-aged hydraulic structures.

An Example Of Gunwi-Dam Small Hydro Power's Improvement On Construction and Operation (군위댐 소수력발전기 시공 및 운영개선 사례)

  • Jung, Pil-Seung;Seo, Su-Sang;Min, Hun-Jin;Kim, Chang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1344-1345
    • /
    • 2011
  • 경북 군위군 고로면에 위치한 저수용량 48,000천톤의 군위 다목적댐에 설치된 소수력발전기에 대한 설치공사 중 수차 설계도면 해석오류에 의한 Guide Vane(이하 G/V로 함.) 과다개방으로 인한 설비고장 및 개선사례, 년 중 댐 수위 변동을 감안한 정격수위와 저수위 시의 수차효율 시험을 통한 댐 수위별 최적의 발전설비 운영방안을 검토하여 저탄소 녹색에너지원인 군위다목적댐 소수력의 발전수익 증대를 도모하였다.

  • PDF

A Study on Reconstruction Models of Side-channel Spillway for Discharge Capacity Improvement (측수로형 여수로의 홍수배제능력증대를 위한 월류부 개축방안에 관한 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2007
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

The improvement of the operating process of sewage treatment plants in the upstream area of dam by MASS FLOWmodelling (MASS FLOW 모델링을 통한 댐상류지역의 공공하수처리시설 공정개선방안)

  • Lee, Hyunseop;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.130-138
    • /
    • 2020
  • As of 2017, the sewerage penetration rate of Seoul and metropolitan cities is more than 90%, and the number of domestic sewage treatment plants increased by 25% from 3,064 in 2010 to 4,072 in 2017. Among them, sewage treatment plant operated by SBR system is 585, which is 17% higher than 2010. In order to improve the water quality of the water source and improve the operation of the small sewage facilities, the improvement of the process was studied by applying the modelling to 49 facilities of the sewage treatment plant in Andong Imha dam area with more than 500㎥/day 3 places and 46 places less than 500㎥/day. As an improvement plan for modelling, candidate data were derived by reviewing operation data for 5 years. 49 facilities are operated by 12 types of operating processes. Among them, 1 place mort than 500㎥/day with SBR method and 9 facilities with less than 500㎥/day were selected by dividing 46 sites into 3 types. As a result of applying modelling to more than 500㎥/day, it was possible to improve the quality of discharged water through SRT control and it was found that applying model to sites of small scale treatment plants can improve the removal efficiency of TP by up to 14.4%. As a result, the data of this study could be used to improve and improve the operation of sewage treatment plants and RCSTP(Rural Community Sewage Tratment Plant).

Improvement of Quantitative Condition Assessment Criteria for Reservoir Embankment Safety Inspection Considering Characteristics of Small Reservoirs in Korea (소규모 저수지의 특성을 고려한 제체 안전진단의 정량적 상태평가 기준 개선)

  • Jeon, Geonyeong;Bang, Donseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.27-38
    • /
    • 2021
  • The physical condition assessment criteria of fill dam safety inspection are now weakly regulated and inappropriate for small agricultural reservoirs since these criteria have fundamental backgrounds suitable for large-scale dams. This study proposes the degree (critical values) of defects for the quantitative condition assessment of the embankment in order to prepare the condition assessment criteria for a small reservoir with a storage capacity of less than one (1) million cubic meters. The critical values of defects were calculated by applying the method that considers the size ratios based on the dimensional data of reservoirs, and the method of statistical analysis on the measured values of the defect degree which extracted from comprehensive annual reports on reservoir safety inspection. In comparison with the current criteria, the newly proposed critical values for each condition assessment item of the reservoir embankment are presented in paragraphs 4 and 6 of the conclusion. In addition, this study presents a method of displaying geometric figures to clarify the rating classification for condition assessment items with the two defect indicators.

Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM) (포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Yong-Jae;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.317-330
    • /
    • 2009
  • To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

Improvement of Vegetation Index Image Simulations by Applying Accumulated Temperature

  • Park, Jin Sue;Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • To analyze temporal and spatial changes in vegetation, it is necessary to determine the associated continuous distribution and conduct growth observations using time series data. For this purpose, the normalized difference vegetation index, which is calculated from optical images, is employed. However, acquiring images under cloud cover and rainfall conditions is challenging; therefore, time series data may often be unavailable. To address this issue, La et al. (2015) developed a multilinear simulation method to generate missing images on the target date using the obtained images. This method was applied to a small simulation area, and it employed a simple analysis of variables with lower constraints on the simulation conditions (where the environmental characteristics at the moment of image capture are considered as the variables). In contrast, the present study employs variables that reflect the growth characteristics of vegetation in a greater simulation area, and the results are compared with those of the existing simulation method. By applying the accumulated temperature, the average coefficient of determination (R2) and RMSE (Root Mean-Squared Error) increased and decreased by 0.0850 and 0.0249, respectively. Moreover, when data were unavailable for the same season, R2 and RMSE increased and decreased by 0.2421 and 0.1289, respectively.

The Effects of Hydrologic Characteristics on Sediment Discharge in Streams with Small and Medium Size Watersheds (중소유역의 수문학적 특성이 하천유사량에 미치는 영향)

  • 김활곤;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.127-136
    • /
    • 1996
  • The purpose of this study is to provide with information for the water resources development and management in stream management planning, such as information on the sediment trensport, design of dam and water facilities, river improvement and flood plains management. The major results obtained from the field measurement and analysis of the watershed characteristics, hydraulic and sediment characteristics are as follows ; 1. The rating curve formulas obtained from the analysis of the hydraulic characteristics data collected are ; Q-=110.563 $(H-0.474)^2$ for 0.7m$(H-0.146)^2$ for 0.4m$Sr=aX{^2} {_1} X^{c}{_2}$, in the experimental watershed.

  • PDF