• Title/Summary/Keyword: small dam

Search Result 291, Processing Time 0.022 seconds

A Study on the Establishment of Water Supply and Demand Monitoring System and Drought Response Plan of Small-scale Water Facilities (소규모수도시설의 공급량-수요량 모니터링 체계 구축 및 가뭄 대응 방안 연구)

  • Choi, Jung-Ryel;Chung, Il-Moon;Jo, Hyun-Jae
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.469-481
    • /
    • 2019
  • In addition to structural stabilization measures such as the construction of Sand Dam, non-structural management measures such as reasonable water demand and supply volume management are needed to prevent limited water supply damage due to drought. In this study, water supply-demand monitoring system was established for drought response in Seosang-ri basin in Chuncheon, the main source of domestic water for small water facilities. The flow rate of the stream was measured for monitoring the supply volume, and the daily flow rate was calculated by using it to calibrate the parameters of the SWAT (Soil and Water Assessment Tool). To monitor demand, the daily usage was calculated by measuring the change in the water level of the water tank. The relationship between the finally calculated daily supply and demand amount was analyzed to identify the shortage of water.

Evaluation of Reciprocal Cross Design on Detection and Characterization of Non-Mendelian QTL in $F_2$ Outbred Populations: I. Parent-of-origin Effect

  • Lee, Yun-Mi;Lee, Ji-Hong;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1805-1811
    • /
    • 2007
  • A simulation study was conducted to evaluate the effect of reciprocal cross on the detection and characterization of parent-of-origin (POE) QTL in $F_2$ QTL populations. Data were simulated under two different mating designs. In the one-way cross design, six $F_0$ grand sires of one breed and 30 $F_0$ grand dams of another breed generated 10 $F_1$ offspring per dam. Sixteen $F_1$ sires and 64 $F_1$ dams were randomly chosen to produce a total of 640 $F_2$ offspring. In the reciprocal design, three $F_0$ grand sires of A breed and 15 $F_0$ grand dams of B breed were mated to generate 10 $F_1$ offspring per dam. Eight $F_1$ sires and 32 $F_1$ dams were randomly chosen to produce 10 $F_2$ offspring per $F_1$ dam, totaling 320 $F_2$ offspring. Another mating set comprised three $F_0$ grand sires of B breed and 15 $F_0$ grand dams of A breed to produce the same number of $F_1$ and $F_2$ offspring. A chromosome of 100 cM was simulated with large, medium or small QTL with fixed or different allele frequencies in parental breeds. A series of tests between Mendelian and POE models were applied to characterize QTL as Mendelian, paternal, maternal or partial expression QTL. The overall detection powers were similar between the two mating designs. However, the proportions of paternally expressed QTL that were declared as paternal QTL type were greater in the reciprocal cross design than in the one-way cross, and vice versa for Mendelian QTL. When QTL alleles were segregating in parental breeds, a significant proportion of Mendelian QTL were spuriously declared POE QTL, suggesting that care must be taken to characterize imprinting QTL in a QTL mapping population with a small number of $F_1$ parents.

Securement of Upland Irrigation Water in Small Dams through Periodical Management of Storage Level (기간별 저수 관리를 통한 소규모 댐의 밭 관개용수 확보)

  • Kim, Sun-Joo;Lee, Joo-Yong;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.3-12
    • /
    • 2005
  • The objective of this study is securement of upland irrigation water using storage level management of small dams. However, it is not new development of water resources but securement of water using storage level management of existing dam. This study has enhanced the water utilization coefficient of dam, after extra available water had been calculated by application of periodical management storage level and this water is used to other water like the upland irrigation water demand. As the result of application, it can secure extra available water except the water requirement. Minimum extra available water except flood is about $20,000,000\;m^3$ and crop irrigation water demand of 10yr frequency is about $2,033,000\;m^3$ in Seongju. The utilization of crop irrigation water can be possible. And extra available water is about $3,102,000\;m^3$ in 2000, $1,959,000\;m^3$ in 2001 except flood period and crop irrigation water demand of 10yr frequency is about $2,272,000\;m^3$ in Donghwa. It is judged that extra available water cannot be used to crop irrigation water during the dry season in Dongwha. Consequently, when management storage level is determined and more efficient use of water is gotten like this study, water utilization coefficient will be enhanced.

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF

Evaluation and Comparison of Four Streamflow Record Extension Techniques for Namgang Dam Basin (남강댐 유역의 네 가지 하천유량자료 확장방법 비교 및 평가)

  • Kim, Gyeong-Hoon;Jung, Kang-Young;Yoon, Jong-Su;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, four methods for calculation of continuous daily flow was suggested using short-term or partial recording station of streamflow including missing data. Using these methods, standard flows at the outlet of unit/small basins for the management of total maximum daily loads (TMDLs) in Namgang dam basin were estimated from full-period flow duration curve (FDC). Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and maintenance of variance extension types 1 and 2 (MOVE.1, MOVE.2). In these methods, the continuous daily flow was calculated using extension equation based on correlation analysis, after conducting the correlation analysis between historic record of streamflow and long-term recording station (a base station). Finally the best optimal method was selected as the MOVE.2, and the standard flows in the abundant, ordinary, low and drought flow estimated from FDC was evaluated using MOVE.2 in unit/small basins.

A Study on the Determination of Water Storage-Supply Capacity of Agricultural Reservoir (소규모 농업용 저수지의 저류량-용수공급능력 결정에 관한 연구)

  • 안승섭;정순돌;이증석;윤경덕;장인수
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1217-1226
    • /
    • 2002
  • This study aims at the effective estimation of water supply capacity of small scale reservoir and the proposal of the data which is necessary to establish the water resources management plan of down stream area of the reservoir in the future by comparison and examination about reservoir operation technique for the security of agricultural water in small scale reservoir. The result of flow calculation by Tank model is used for the input data as the inflow data which is needed for the analysis of water supply capacity. Stochastic method, simulation method, and optimization method are used to examine the water supply capacity, and water security amount is compared with each method. From the analyses of water supply capacities by each method, slightly different results are shown in spite of the effort to compare them equally using input data such as inflow data under equal conditions, and the comparison of water supply capacities by each method are as follows; linear planning method, simulation method, and transition probability matrix method in the order of amount from the largest. It is thought that the simulation method in which comparatively reasonable application of the inflow data is possible and is simulated in successive time series dam operation of the three methods used in this study thus, simulation model is proper to estimate the water supply capacity of agricultural small scale reservoir. And it is judged that the heightening of efficiency of water resources utilization according to the development of downstream area of dam may be possible using the upward readjusted water supply amount of $55.18{\tiems}10^6ton$ and $63.7{\times}10^6ton$ at 95% and 90% supply reliability respectively which are above the planning water supply amount of $50.0{\times}10^6$ton when the simulation method is introduced as the standard.

Study on Selection Criteria of Small-Scales Reservoirs for Emergency Action Plan(EAP) Establishment (소규모 저수지 대상 비상대처계획 수립 선정기준 연구)

  • Park, Ki-Chan;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • This study developed selection criteria of small-scales reservoirs, having under $300,000m^3$ storage capacity, for the Emergency Action Plan(EAP) establishment in order to reduce the disaster risks of the reservoir's failures. Those reservoirs are out of ranges of Korean EAP establishment standard, but have potential risk of disasters as they have often failed by the recent extreme rainfall events and earthquakes, causing economical and life losses. The problem of reservoir aging is also one of the reasons of them. In this study, the developed selection criteria of small reservoirs for EAP establishment are storage capacity, embankment height, reservoir age, heavy rain factor and earthquake factor. These criteria were selected based on the review of the existing EAP establishment guidelines, analysis of the past dam failure cases, and the previous related studies. The quantification of these criteria were conducted for the practical applications in the fields, and applied to 67 previous failures in order to investigate the relation of each criteria with these failures. The earthquake factor found to be the highest relations followed by heavy rain factors, combination of earthquake and heavy rain factors, and reservoir age. The classification was made as observation and review groups for EAP establishments based on overlapping numbers of each criteria. This classifications applied to 354 reservoirs designated as having the potential disaster risk by MOIS, and showed 38.4% of observation and 11.9% of review groups. Anticipatory monitoring and regular inspection should be made by professional facility managers for the observation group, and necessity of EAP establishment should be assessed for the review group based on the downstream status and financial budget.

A Lubrication Performance Analysis of Mechanical Face Seals Using Galerkin Finite Element Method (갤러킨 유한요소해석법을 이용한 미케니컬 페이스 실의 윤활성능해석)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.916-922
    • /
    • 2001
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface between a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance of the mating seal faces gets smaller. But the very small seal clearance results in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, and it presents a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby it is one of the main design considerations. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries. Film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, lubrication performances of the seals, such as opening forces, restoring moments, leakage, and dynamic coefficients, are calculated, and they are compared to the results obtained by the narrow seal approximation.

Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태변화에 의한 소수력발전소 수문학적 성능의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.