• Title/Summary/Keyword: small cylinder-type

검색결과 85건 처리시간 0.028초

반궤도식 산림작업차 개발(I) - 설계 및 제작 - (Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture -)

  • 김재환;박상준
    • 한국산림과학회지
    • /
    • 제100권2호
    • /
    • pp.154-164
    • /
    • 2011
  • 본 연구는 우리나라 험준한 급경사 지형의 단목중심의 목재생산시스템 등에 적합하고 사방사업, 임도사업 등의 다양한 산림작업에 유용하게 활용할 수 있는 다목적의 반궤도식 산림작업차 개발을 목적으로 실시하였다. 산림작업차량의 기본 차체는 최소회전반경 설계기준과 작업도 폭을 고려하여 차체프레임부의 총길이는 5,750 mm, 차체의 폭은 1,900 mm, 적재부의 적재용량은 약 $2.5m^{3}$으로 설계 제작하였다. 동력원은 3,400 rpm의 최대 96마력 출력의 엔진을 선정하였으며, 유압펌프는 2개의 주펌프와 2개의 보조펌프로 나누어 선정하고, 주펌프는 전후좌우 4개의 주행용 유압모터에 사용하고, 보조펌프는 각종 작업기에 사용하도록 설계 제작하였다. 동력전달방식은 HST(Hydro-Static Transmission) 시스템을 적용하였고, 주행부는 조향가능한 전방 고무바퀴와 무한 궤도형으로 회전하는 후방 크롤러로 설계 제작하고, 조향방식은 애커만 조향방식을 채택하였다. 주행조작부는 일반 자동차의 운전 및 운전석 형태로 설계 제작하였으며, 보조장치로 윈치와 로그그래플 및 아웃트리거를 장착하였다. 시작기의 공차시 임도의 주행속도는 저속 5.3 km/hr, 고속 7.7 km/hr로 나타났다.

폐식용유를 이용한 소형 디젤기관의 성능 (Performances of the Used Frying Oil on a Small Diesel Engine)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF

시간 의존적 배수저항을 고려한 방사방향 압밀곡선 예측법 (A Modified Method for the Radial Consolidation with the Time Dependent Well Resistance)

  • 김래현;홍성진;정두석;이우진
    • 한국지반공학회논문집
    • /
    • 제24권6호
    • /
    • pp.77-84
    • /
    • 2008
  • 실내시험에서 측정된 배수재의 통수능과 실제 현장에서 나타나는 배수거동은 근본적으로 다름에도 불구하고 기존의 많은 연구들은 실내시험을 통해 획득한 통수능 값을 이용하여 압밀 곡선을 예측하고 있다. 또한 기존의 압밀해는 압밀 진행에 따른 교란효과와 배수저항의 변화를 고려할 수 없어 실제 압밀거동과 잘 일치하지 않는 문제점이 있다. 본 연구에서는 현장에서 채취한 대형 블록시료에 연직배수재를 설치하고 압밀을 진행하면서 시간에 따른 침하량을 측정하였다. 이를 이용하여 시간에 따라 증가되는 배수 저항계수를 시간 의존적 함수로 정의하고 기존의 방사방향 압밀 해에 도입하여 수정된 방사방향 압밀 예측 방법을 제안하였다. 제안된 방법으로 예측한 결과를 실측 데이터 및 기존 제안식과 비교한 결과, 제안된 방법이 실측치에 가장 근접한 방사방향 압밀 곡선을 예측하는 것으로 관찰되었다.

2단 실린더형 싸이클론의 물 및 오일 액적 제거 성능 분석 연구 (Evaluation of removal performance of a novel two-stage cylinder type cyclone against water and oil droplets)

  • 김수민;김학준;김명준;한방우;우창규;김용진
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.119-125
    • /
    • 2017
  • A novel two stage cylindrical cyclone was developed for a 3 phase separator in shale oil production industry. The cyclone performance was compared with a cone type cyclone and multi cyclone at the same experimental condition using water and oil mists generated by a humidifier and atomizer at the flow rate 1 to $2m^3/min$. The removal efficiency of total suspended water droplets by the novel cyclone, calculated using inlet and outlet concentrations measured by an optical particle counter, was 99% which is higher than 90% of oil droplet removal efficiency at $2m^3/min$. It might be due to the evaporation of small water droplets during the tests. The water and oil droplet removal performance of the novel cyclone based on the quality factor which is a function of pressure drop and removal efficiency was the highest among three cyclones. The results indicate that the cyclone could be an economical device to remove water and oil mists from shale gas generation processes where a huge three phase separator is commonly used.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

소형(小型) 디젤엔진의 예연소실(豫燃焼室) 형상(形狀)이 냉시동성(冷始動性)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究) (Effects of Precombustion Chamber Shape on the Start ability of Small Diesel Engine under the Cold Weather)

  • 문계송;김용환;이승규
    • Journal of Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.9-19
    • /
    • 1982
  • 소형(小型) 디젤엔진의 예연소실(豫燃燒室) 형상(形狀)이 저온시(低溫時)의 시동성(始動性)에 미치는 영향(影響)을 구명(究明)하기 위해 8종(種)의 예연소실(豫燃燒室)과 2종(種)의 실린더헤드를 제작(製作)하여 $2^7$ 요인실험법(要因實驗法)에 의해 1회(回) 조작시(操作時) 최저(最低) 시동가능(始動可能) 온도(溫度), 최대출력(最大出力), 전부하(全負荷)(4/4) 및 과부하(過負荷)(11/10)시(時)의 연료소비율(燃料消費率)을 측정(測定)하여 분석(分析)한 결과(結果)를 요약(要約)하연 다음과 같다. 가. 피스톤 상면(上面)에 대한 주분사구(主噴射口)의 상대각도(相對角度)가 $20^{\circ}$에서 $18^{\circ}$로 감소(減少)하면 최저(最低) 시동가능(始動可能) 온도(溫度)가 약(約) $2.4^{\circ}C$ 낮아졌으며 최대출력(最大出力)은 약(約) 0.3ps 증가(增加)되었다. 나. 실린더헤드 홈 각도(角度)가 $20^{\circ}$에서 $18^{\circ}$로 작아짐에 따라 최저(最低) 시동가능(始動可能) 온도(溫度)가 약(約) $3.3^{\circ}C$ 낮아졌으며, 최대출력(最大出力)은 약(約) 0.3ps 감소(減少)되었다. 다. 예연소실(豫燃燒室) 길이가 17.5mm에서 15.5mm로 짧아지면 최저(最低) 시동가능(始動可能) 온도(溫度)가 $2^{\circ}C$ 낮아졌으며 최대출력(最大出力)은 0.2ps정도(程度) 감소(減少)되었다. 라. 주분사구(主噴射口) 직경(直俓)이 4.8mm에서 4.5mm로 작아지면 최대출력(最大出力)은 0.2ps정도(程度) 증가(增加)했으나, 주분사구(主噴射口) 직경(直俓)만이 변화(變化)에 따른 시동성(始動性)의 차이(差異)는 인정(認定)되지 않았다. 마. 주분사구(主噴射口) 각도(角度)가 $47^{\circ}$이고 실린더헤드 홈 각도(角度)가 $18^{\circ}$일 경우(境遇) 시동가능(始動可能) 온도(溫度)가 가장 낮았으며, 주분사구(主噴射口) 직경(直俓)이 4.5mm이고 예연소실(豫燃燒室) 길이가 17.5mm일 경우(境遇) 최대출력(最大出力)도 가장 높았고, 전부하(全負荷) 및 과부하시(過負荷時)의 연료소비율(燃料消費率)도 가장 낮았다. 바. 실린더 헤드홈 각도(角度)와 주분사구(主噴射口)의 각도(角度)가 각각(各各) 시동성(始動性) 향상(向上)에 가장 큰 영향(影響)을 미쳤으며, 또한 주분사구(主噴射口) 직경(直俓)과 예연소실(豫燃燒室) 길이와의 교호작용(交互作用)이 최대출력(最大出力)에 가장 큰 영향(影響)을 미쳤으므로 이들 요인(要因)에 대한 처리수(處理數)를 늘려 시험(試驗)해 볼 필요성(必要性)이 있는 것으로 사료(思料)된다. 사. 본(本) 실험(實驗)에서 최적조건(最適條件)으로 나타난 시작(試作) 예연소실(豫燃燒室)은 기존(旣存) 예연소실(豫燃燒室)보다 약(約) $-6^{\circ}C$의 시동성(始動性) 향상(向上)을 나타냈다.

  • PDF

소농을 위한 밤 수확기의 개발 (Development of Chestnut Harvesters for Small Farms)

  • 강화석
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.384-389
    • /
    • 2008
  • Three prototype chestnut harvesters were constructed and evaluated their chestnut collection ability and field efficiency. Air-lock paddle system successfully picked up all loose material, and pick up efficiency was about 56 kg/h. Power required to operate this system was evaluated to be 8.7 kW with an air flow rate of $32.6\;m^3/min$. A radial blade type blower with 0.41 m impeller diameter was considered to be a minimum size for this system. For the auger system, air was sucked into the cylinder as the hinged flat cover began to be opened by the material pushed by the auger, and the empty burrs flew back to the container through the space between auger flights and collected in the bottom of the container. It was considered to add a device to prevent air from flowing back or to use the back flowing air for separation of burrs and nuts inside the container. The venturi system could not pick up chestnuts, as they only carried part way up to the suction hose. Consideration was given to an idea that the venturi could be used as a cleaning and separation mechanism for containers filled with both empty burrs and good nuts. A minimum vacuum of 129 mm wg was required to pick up chestnuts, and the corresponding inlet air velocity was 19.3 m/s. 104 mm of vacuum, which was about 81 % of that required for nuts, was enough to pick up burrs with nuts inside. Also, empty burrs with higher moisture content recorded the same pressure as for the burrs with nuts.

사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법 (A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm)

  • 오세붕;박현일
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.37-48
    • /
    • 2004
  • 본 연구에서는 사질토의 취성적 응력-변형률 관계와 전단시 체적팽창을 고려할 수 있는 구성모델에 대한 연구를 수행하였다. 제안된 모델은 일반등방경화규칙에 의거한 비등방 경화규칙을 적용하였으며, 미소변형에서 대변형에 이르는 전체변형률 영역의 거동을 모델할 수 있도록 적합한 경화함수를 이용하였다. 항복면의 형태는 응력공간에서 원통형으로 나타나는 단순한 형태로 실용적으로 적용하기 편리하도록 하였다. 또한 유동규칙을 단순화하여 소성 체적 변형률을 팽창률을 이용하여 정의하였다. 이로 인하여 사질토에서 나타나는 전단시 팽창을 모델하는 것이 가능하였다. 또한 가상적인 첨두응력비를 정의하여 취성적 응력-변형률 관계를 모델하는 것이 가능하였다. 이 때 제안된 모델의 계수를 체계적으로 결정하기 위하여 실수형 유전자 알고리즘이 적용된 최적화 기법이 적용되었다. 이를 통하여 구성 모델에 필요한 계수를 결정할 수 있었다. 제안된 모델을 검증하기 위하여 풍화토시료에 대한 $K_0$ 압밀 삼축시험을 수행하였다. 이러한 시험결과를 제안된 모델과 비교한 결과 $K_0$ 압밀 시험에서 나타나는 취성적 응력-변형률 관계 및 체적의 팽창과 같은 실제 유효응력 거동을 합리적으로 모델하는 것이 가능하였다.

A Study on the Noise Reduction of Reciprocating Type Air Compressors

  • Lee Kwang-Kil;Kim Kwang-Jong;Lee Gwan-Hyung;Park Jae-Suk;Son Doo-ik;Kim Bong-Ki;Lee Dong-Ju
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.6-9
    • /
    • 2004
  • This paper deals with the noise evaluation technique of a reciprocating air-compressor and its noise reduction. The reciprocating air-compressors are widely used in the small, medium sized industrial firms, and lots of their employees are affected and irritated by their noise in the workplace. Thus, noise control actions should be taken appropriately by considering the hearing loss due to the occupational noise exposure. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known as motor, belts, suction/discharge valves, moving pistons, and flow-induced noise caused by edges or discontinuities along the flow path e.g. expansions, contractions, junctions and bends etc .. As a result, main noise sources of the air-compressor can be categorized by the suction/discharge noise, valve noise, and compressed-air tank noise. Based on the investigations, mufflers are designed to reduce both the suction/discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, polyethylene resin is used as a new one for the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings. As a result of the countermeasure plans, it can be achieved that the noise reduction of the air-compress is up to 10dB.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF